Advertisement

Calcified Tissue International

, Volume 101, Issue 5, pp 457–464 | Cite as

Bicarbonate Transport During Enamel Maturation

Review

Abstract

Amelogenesis (tooth enamel formation) is a biomineralization process consisting primarily of two stages (secretory stage and maturation stage) with unique features. During the secretory stage, the inner epithelium of the enamel organ (i.e., the ameloblast cells) synthesizes and secretes enamel matrix proteins (EMPs) into the enamel space. The protein-rich enamel matrix forms a highly organized architecture in a pH-neutral microenvironment. As amelogenesis transitions to maturation stage, EMPs are degraded and internalized by ameloblasts through endosomal–lysosomal pathways. Enamel crystallite formation is initiated early in the secretory stage, however, during maturation stage the more rapid deposition of calcium and phosphate into the enamel space results in a rapid expansion of crystallite length and mineral volume. During maturation-stage amelogenesis, the pH value of enamel varies considerably from slightly above neutral to acidic. Extracellular acid–base balance during enamel maturation is tightly controlled by ameloblast-mediated regulatory networks, which include significant synthesis and movement of bicarbonate ions from both the enamel papillary layer cells and ameloblasts. In this review we summarize the carbonic anhydrases and the carbonate transporters/exchangers involved in pH regulation in maturation-stage amelogenesis. Proteins that have been shown to be instrumental in this process include CA2, CA6, CFTR, AE2, NBCe1, SLC26A1/SAT1, SLC26A3/DRA, SLC26A4/PDS, SLC26A6/PAT1, and SLC26A7/SUT2. In addition, we discuss the association of miRNA regulation with bicarbonate transport in tooth enamel formation.

Keywords

Amelogenesis Bicarbonate Carbonic anhydrase Enamel Solute carrier genes 

Notes

Acknowledgements

The authors would like to thank Bridget Samuels for help with the preparation of the manuscript.

Funding

This work was supported by NIH/NIDCR [Grants # R01 DE019629 and R21 DE024704 (M.L.P), R90 DE022582 (K.Y)].

Conflict of interest

Kaifeng Yin and Michael L. Paine declare that they have no conflicts of interest.

References

  1. 1.
    Alper SL (2006) Molecular physiology of SLC4 anion exchangers. Exp Physiol 91:153–161CrossRefPubMedGoogle Scholar
  2. 2.
    Alper SL, Sharma AK (2013) The SLC26 gene family of anion transporters and channels. Mol Aspects Med 34:494–515CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Applebaum E, Zegarelli EV, Kutscher AH, Denning CR, Fahn B (1964) Discoloration of the teeth in patients with cystic fibrosis of the pancreas. Histologic studies. Oral Surg Oral Med Oral Pathol 17:366–367CrossRefPubMedGoogle Scholar
  4. 4.
    Arquitt CK, Boyd C, Wright JT (2002) Cystic fibrosis transmembrane regulator gene (CFTR) is associated with abnormal enamel formation. J Dent Res 81:492–496CrossRefPubMedGoogle Scholar
  5. 5.
    Azevedo TD, Feijo GC, Bezerra AC (2006) Presence of developmental defects of enamel in cystic fibrosis patients. J Dent Child 73:159–163Google Scholar
  6. 6.
    Banales JM, Saez E, Uriz M, Sarvide S, Urribarri AD, Splinter P, Tietz Bogert PS, Bujanda L, Prieto J, Medina JF, LaRusso NF (2012) Up-regulation of microRNA 506 leads to decreased Cl−/HCO3 anion exchanger 2 expression in biliary epithelium of patients with primary biliary cirrhosis. Hepatology 56:687–697CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Bori E, Guo J, Racz R, Burghardt B, Foldes A, Keremi B, Harada H, Steward MC, Den Besten P, Bronckers AL, Varga G (2016) Evidence for bicarbonate secretion by ameloblasts in a novel cellular model. J Dent Res 95:588–596CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Bronckers A, Kalogeraki L, Jorna HJ, Wilke M, Bervoets TJ, Lyaruu DM, Zandieh-Doulabi B, Denbesten P, de Jonge H (2010) The cystic fibrosis transmembrane conductance regulator (CFTR) is expressed in maturation stage ameloblasts, odontoblasts and bone cells. Bone 46:1188–1196CrossRefPubMedGoogle Scholar
  9. 9.
    Bronckers AL (2017) Ion transport by ameloblasts during amelogenesis. J Dent Res 96:243–253CrossRefPubMedGoogle Scholar
  10. 10.
    Bronckers AL, Guo J, Zandieh-Doulabi B, Bervoets TJ, Lyaruu DM, Li X, Wangemann P, DenBesten P (2011) Developmental expression of solute carrier family 26A member 4 (SLC26A4/pendrin) during amelogenesis in developing rodent teeth. Eur J Oral Sci 119(Suppl 1):185–192CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Bronckers AL, Lyaruu DM, Guo J, Bijvelds MJ, Bervoets TJ, Zandieh-Doulabi B, Medina JF, Li Z, Zhang Y, DenBesten PK (2015) Composition of mineralizing incisor enamel in cystic fibrosis transmembrane conductance regulator-deficient mice. Eur J Oral Sci 123:9–16CrossRefPubMedGoogle Scholar
  12. 12.
    Bronckers AL, Lyaruu DM, Jansen ID, Medina JF, Kellokumpu S, Hoeben KA, Gawenis LR, Oude-Elferink RP, Everts V (2009) Localization and function of the anion exchanger Ae2 in developing teeth and orofacial bone in rodents. J Exp Zool B Mol Dev Evol 312B:375–387CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Bruce LJ, Cope DL, Jones GK, Schofield AE, Burley M, Povey S, Unwin RJ, Wrong O, Tanner MJ (1997) Familial distal renal tubular acidosis is associated with mutations in the red cell anion exchanger (Band 3, AE1) gene. J Clin Invest 100:1693–1707CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Cao H, Wang J, Li X, Florez S, Huang Z, Venugopalan SR, Elangovan S, Skobe Z, Margolis HC, Martin JF, Amendt BA (2010) MicroRNAs play a critical role in tooth development. J Dent Res 89:779–784CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Chang EH, Lacruz RS, Bromage TG, Bringas P Jr, Welsh MJ, Zabner J, Paine ML (2011) Enamel pathology resulting from loss of function in the cystic fibrosis transmembrane conductance regulator in a porcine animal model. Cells Tissues Organs 194:249–254CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Chegwidden WR, Dodgson SJ, Spencer IM (2000) The roles of carbonic anhydrase in metabolism, cell growth and cancer in animals. EXS 90:343–363Google Scholar
  17. 17.
    Collins FS (1992) Cystic fibrosis: molecular biology and therapeutic implications. Science 256:774–779CrossRefPubMedGoogle Scholar
  18. 18.
    Cua FT (1991) Calcium and phosphorous in teeth from children with and without cystic fibrosis. Biol Trace Elem Res 30:277–289CrossRefPubMedGoogle Scholar
  19. 19.
    Dawson PA, Russell CS, Lee S, McLeay SC, van Dongen JM, Cowley DM, Clarke LA, Markovich D (2010) Urolithiasis and hepatotoxicity are linked to the anion transporter Sat1 in mice. J Clin Invest 120:706–712CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Dinour D, Chang MH, Satoh J, Smith BL, Angle N, Knecht A, Serban I, Holtzman EJ, Romero MF (2004) A novel missense mutation in the sodium bicarbonate cotransporter (NBCe1/SLC4A4) causes proximal tubular acidosis and glaucoma through ion transport defects. J Biol Chem 279:52238–52246CrossRefPubMedGoogle Scholar
  21. 21.
    Dogterom AA, Bronckers AL (1983) Carbonic anhydrase in developing hamster molars. J Dent Res 62:789–791CrossRefPubMedGoogle Scholar
  22. 22.
    Duan X (2014) Ion channels, channelopathies, and tooth formation. J Dent Res 93:117–125CrossRefPubMedGoogle Scholar
  23. 23.
    Duan X, Mao Y, Wen X, Yang T, Xue Y (2011) Excess fluoride interferes with chloride-channel-dependent endocytosis in ameloblasts. J Dent Res 90:175–180CrossRefPubMedGoogle Scholar
  24. 24.
    Einum DD, Zhang J, Arneson PJ, Menon AG, Ptacek LJ (1998) Genomic structure of human anion exchanger 3 and its potential role in hereditary neurological disease. Neurogenetics 1:289–292CrossRefPubMedGoogle Scholar
  25. 25.
    Fan Y, Zhou Y, Zhou X, Sun F, Gao B, Wan M, Zhou X, Sun J, Xu X, Cheng L, Crane J, Zheng L (2015) MicroRNA 224 regulates ion transporter expression in ameloblasts to coordinate enamel mineralization. Mol Cell Biol 35:2875–2890CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Freel RW, Hatch M, Green M, Soleimani M (2006) Ileal oxalate absorption and urinary oxalate excretion are enhanced in Slc26a6 null mice. Am J Physiol Gastrointest Liver Physiol 290:G719–G728CrossRefPubMedGoogle Scholar
  27. 27.
    Garant PR, Nagy A, Cho MI (1984) A freeze-fracture study of ruffle-ended post-secretory ameloblasts. J Dent Res 63:622–628CrossRefPubMedGoogle Scholar
  28. 28.
    Gawenis LR, Bradford EM, Prasad V, Lorenz JN, Simpson JE, Clarke LL, Woo AL, Grisham C, Sanford LP, Doetschman T, Miller ML, Shull GE (2007) Colonic anion secretory defects and metabolic acidosis in mice lacking the NBC1 Na+/HCO3 cotransporter. J Biol Chem 282:9042–9052CrossRefPubMedGoogle Scholar
  29. 29.
    Hastbacka J, de la Chapelle A, Mahtani MM, Clines G, Reeve-Daly MP, Daly M, Hamilton BA, Kusumi K, Trivedi B, Weaver A et al (1994) The diastrophic dysplasia gene encodes a novel sulfate transporter: positional cloning by fine-structure linkage disequilibrium mapping. Cell 78:1073–1087CrossRefPubMedGoogle Scholar
  30. 30.
    Hoglund P, Haila S, Socha J, Tomaszewski L, Saarialho-Kere U, Karjalainen-Lindsberg ML, Airola K, Holmberg C, de la Chapelle A, Kere J (1996) Mutations of the down-regulated in adenoma (DRA) gene cause congenital chloride diarrhoea. Nat Genet 14:316–319CrossRefPubMedGoogle Scholar
  31. 31.
    Hubbard MJ (2000) Calcium transport across the dental enamel epithelium. Crit Rev Oral Biol Med 11:437–466CrossRefPubMedGoogle Scholar
  32. 32.
    Inatomi J, Horita S, Braverman N, Sekine T, Yamada H, Suzuki Y, Kawahara K, Moriyama N, Kudo A, Kawakami H, Shimadzu M, Endou H, Fujita T, Seki G, Igarashi T (2004) Mutational and functional analysis of SLC4A4 in a patient with proximal renal tubular acidosis. Pflugers Arch 448:438–444CrossRefPubMedGoogle Scholar
  33. 33.
    Jagels AE, Sweeney EA (1976) Oral health of patients with cystic fibrosis and their siblings. J Dent Res 55:991–996CrossRefPubMedGoogle Scholar
  34. 34.
    Jalali R, Guo J, Zandieh-Doulabi B, Bervoets TJ, Paine ML, Boron WF, Parker MD, Bijvelds MJ, Medina JF, DenBesten PK, Bronckers AL (2014) NBCe1 (SLC4A4) a potential pH regulator in enamel organ cells during enamel development in the mouse. Cell Tissue Res 358:433–442CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Jalali R, Zandieh-Doulabi B, DenBesten PK, Seidler U, Riederer B, Wedenoja S, Micha D, Bronckers AL (2015) Slc26a3/Dra and Slc26a6 in murine ameloblasts. J Dent Res 94:1732–1739CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Jarolim P, Rubin HL, Liu SC, Cho MR, Brabec V, Derick LH, Yi SJ, Saad ST, Alper S, Brugnara C et al (1994) Duplication of 10 nucleotides in the erythroid band 3 (AE1) gene in a kindred with hereditary spherocytosis and band 3 protein deficiency (band 3PRAGUE). J Clin Invest 93:121–130CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Jiang Z, Asplin JR, Evan AP, Rajendran VM, Velazquez H, Nottoli TP, Binder HJ, Aronson PS (2006) Calcium oxalate urolithiasis in mice lacking anion transporter Slc26a6. Nat Genet 38:474–478CrossRefPubMedGoogle Scholar
  38. 38.
    Josephsen K, Fejerskov O (1977) Ameloblast modulation in the maturation zone of the rat incisor enamel organ. A light and electron microscopic study. J Anat 124:45–70PubMedPubMedCentralGoogle Scholar
  39. 39.
    Josephsen K, Takano Y, Frische S, Praetorius J, Nielsen S, Aoba T, Fejerskov O (2010) Ion transporters in secretory and cyclically modulating ameloblasts: a new hypothesis for cellular control of preeruptive enamel maturation. Am J Physiol Cell Physiol 299:C1299–C1307CrossRefPubMedGoogle Scholar
  40. 40.
    Kakei M, Nakahara H (1996) Aspects of carbonic anhydrase and carbonate content during mineralization of the rat enamel. Biochim Biophys Acta 1289:226–230CrossRefPubMedGoogle Scholar
  41. 41.
    Lacruz RS (2017) Enamel: molecular identity of its transepithelial ion transport system. Cell Calcium 65:1–7CrossRefPubMedGoogle Scholar
  42. 42.
    Lacruz RS, Brookes SJ, Wen X, Jimenez JM, Vikman S, Hu P, White SN, Lyngstadaas SP, Okamoto CT, Smith CE, Paine ML (2013) Adaptor protein complex 2-mediated, clathrin-dependent endocytosis, and related gene activities, are a prominent feature during maturation stage amelogenesis. J Bone Miner Res 28:672–687CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Lacruz RS, Habelitz S, Wright JT, Paine ML (2017) Dental enamel formation and implications for oral health and disease. Physiol Rev 97:939–993CrossRefPubMedGoogle Scholar
  44. 44.
    Lacruz RS, Hilvo M, Kurtz I, Paine ML (2010) A survey of carbonic anhydrase mRNA expression in enamel cells. Biochem Biophys Res Commun 393:883–887CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Lacruz RS, Nanci A, Kurtz I, Wright JT, Paine ML (2010) Regulation of pH during amelogenesis. Calcif Tissue Int 86:91–103CrossRefPubMedGoogle Scholar
  46. 46.
    Lacruz RS, Nanci A, White SN, Wen X, Wang H, Zalzal SF, Luong VQ, Schuetter VL, Conti PS, Kurtz I, Paine ML (2010) The sodium bicarbonate cotransporter (NBCe1) is essential for normal development of mouse dentition. J Biol Chem 285:24432–24438CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Lacruz RS, Smith CE, Bringas P Jr, Chen YB, Smith SM, Snead ML, Kurtz I, Hacia JG, Hubbard MJ, Paine ML (2012) Identification of novel candidate genes involved in mineralization of dental enamel by genome-wide transcript profiling. J Cell Physiol 227:2264–2275CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Lacruz RS, Smith CE, Chen YB, Hubbard MJ, Hacia JG, Paine ML (2011) Gene-expression analysis of early- and late-maturation-stage rat enamel organ. Eur J Oral Sci 119(Suppl 1):149–157CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Lacruz RS, Smith CE, Kurtz I, Hubbard MJ, Paine ML (2013) New paradigms on the transport functions of maturation-stage ameloblasts. J Dent Res 92:122–129CrossRefPubMedGoogle Scholar
  50. 50.
    Lacruz RS, Smith CE, Moffatt P, Chang EH, Bromage TG, Bringas P Jr, Nanci A, Baniwal SK, Zabner J, Welsh MJ, Kurtz I, Paine ML (2012) Requirements for ion and solute transport, and pH regulation during enamel maturation. J Cell Physiol 227:1776–1785CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Lagerstrom-Fermer M, Nilsson M, Backman B, Salido E, Shapiro L, Pettersson U, Landegren U (1995) Amelogenin signal peptide mutation: correlation between mutations in the amelogenin gene (AMGX) and manifestations of X-linked amelogenesis imperfecta. Genomics 26:159–162CrossRefPubMedGoogle Scholar
  52. 52.
    Li A, Song T, Wang F, Liu D, Fan Z, Zhang C, He J, Wang S (2012) MicroRNAome and expression profile of developing tooth germ in miniature pigs. PLoS ONE 7:e52256CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Lin HM, Nakamura H, Noda T, Ozawa H (1994) Localization of H(+)-ATPase and carbonic anhydrase II in ameloblasts at maturation. Calcif Tissue Int 55:38–45CrossRefPubMedGoogle Scholar
  54. 54.
    Liu H, Lin H, Zhang L, Sun Q, Yuan G, Zhang L, Chen S, Chen Z (2013) miR-145 and miR-143 regulate odontoblast differentiation through targeting Klf4 and Osx genes in a feedback loop. J Biol Chem 288:9261–9271CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Lyaruu DM, Bronckers AL, Mulder L, Mardones P, Medina JF, Kellokumpu S, Oude Elferink RP, Everts V (2008) The anion exchanger Ae2 is required for enamel maturation in mouse teeth. Matrix Biol 27:119–127CrossRefPubMedGoogle Scholar
  56. 56.
    Lyman GE, Waddell WJ (1977) pH gradients in the developing teeth of young mice from autoradiography of [14C]DMO. Am J Physiol 232:F364–F367PubMedGoogle Scholar
  57. 57.
    Medina JF, Martinez A, Vazquez JJ, Prieto J (1997) Decreased anion exchanger 2 immunoreactivity in the liver of patients with primary biliary cirrhosis. Hepatology 25:12–17CrossRefPubMedGoogle Scholar
  58. 58.
    Michon F (2011) Tooth evolution and dental defects: from genetic regulation network to micro-RNA fine-tuning. Birth Defects Res A 91:763–769CrossRefGoogle Scholar
  59. 59.
    Nanci A (2008) Ten Cate’s oral histology development, structure and function. Mosby Elsevier, St LouisGoogle Scholar
  60. 60.
    Paine ML, Snead ML, Wang HJ, Abuladze N, Pushkin A, Liu W, Kao LY, Wall SM, Kim YH, Kurtz I (2008) Role of NBCe1 and AE2 in secretory ameloblasts. J Dent Res 87:391–395CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Pan P, Leppilampi M, Pastorekova S, Pastorek J, Waheed A, Sly WS, Parkkila S (2006) Carbonic anhydrase gene expression in CA II-deficient (Car2−/−) and CA IX-deficient (Car9−/−) mice. J Physiol 571:319–327CrossRefPubMedGoogle Scholar
  62. 62.
    Park HW, Nam JH, Kim JY, Namkung W, Yoon JS, Lee JS, Kim KS, Venglovecz V, Gray MA, Kim KH, Lee MG (2010) Dynamic regulation of CFTR bicarbonate permeability by [Cl]i and its role in pancreatic bicarbonate secretion. Gastroenterology 139:620–631CrossRefPubMedGoogle Scholar
  63. 63.
    Pastorekova S, Parkkila S, Pastorek J, Supuran CT (2004) Carbonic anhydrases: current state of the art, therapeutic applications and future prospects. J Enzyme Inhib Med Chem 19:199–229CrossRefPubMedGoogle Scholar
  64. 64.
    Petrovic S, Barone S, Xu J, Conforti L, Ma L, Kujala M, Kere J, Soleimani M (2004) SLC26A7: a basolateral Cl/HCO3 exchanger specific to intercalated cells of the outer medullary collecting duct. Am J Physiol Renal Physiol 286:F161–F169CrossRefPubMedGoogle Scholar
  65. 65.
    Petrovic S, Ju X, Barone S, Seidler U, Alper SL, Lohi H, Kere J, Soleimani M (2003) Identification of a basolateral Cl/HCO3 exchanger specific to gastric parietal cells. Am J Physiol Gastrointest Liver Physiol 284:G1093–G1103CrossRefPubMedGoogle Scholar
  66. 66.
    Petrovic S, Ma L, Wang Z, Soleimani M (2003) Identification of an apical Cl/HCO3 exchanger in rat kidney proximal tubule. Am J Physiol Cell Physiol 285:C608–C617CrossRefPubMedGoogle Scholar
  67. 67.
    Romero MF, Chen AP, Parker MD, Boron WF (2013) The SLC4 family of bicarbonate (HCO(3)(−)) transporters. Mol Aspects Med 34:159–182CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Sasaki S, Takagi T, Suzuki M (1991) Cyclical changes in pH in bovine developing enamel as sequential bands. Arch Oral Biol 36:227–231CrossRefPubMedGoogle Scholar
  69. 69.
    Shapiro JL, Wen X, Okamoto CT, Wang HJ, Lyngstadaas SP, Goldberg M, Snead ML, Paine ML (2007) Cellular uptake of amelogenin, and its localization to CD63, and Lamp1-positive vesicles. Cell Mol Life Sci 64:244–256CrossRefPubMedGoogle Scholar
  70. 70.
    Sheffield VC, Kraiem Z, Beck JC, Nishimura D, Stone EM, Salameh M, Sadeh O, Glaser B (1996) Pendred syndrome maps to chromosome 7q21-34 and is caused by an intrinsic defect in thyroid iodine organification. Nat Genet 12:424–426CrossRefPubMedGoogle Scholar
  71. 71.
    Simmer JP, Fincham AG (1995) Molecular mechanisms of dental enamel formation. Crit Rev Oral Biol Med 6:84–108CrossRefPubMedGoogle Scholar
  72. 72.
    Skobe Z, Prostak KS, Stern DN (1988) A scanning electron microscope study of monkey maturation-stage ameloblasts. J Dent Res 67:1396–1401CrossRefPubMedGoogle Scholar
  73. 73.
    Sly WS, Hu PY (1995) Human carbonic anhydrases and carbonic anhydrase deficiencies. Annu Rev Biochem 64:375–401CrossRefPubMedGoogle Scholar
  74. 74.
    Smith CE (1998) Cellular and chemical events during enamel maturation. Crit Rev Oral Biol Med 9:128–161CrossRefPubMedGoogle Scholar
  75. 75.
    Smith CE, Issid M, Margolis HC, Moreno EC (1996) Developmental changes in the pH of enamel fluid and its effects on matrix-resident proteinases. Adv Dent Res 10:159–169CrossRefPubMedGoogle Scholar
  76. 76.
    Smith CE, Nanci A (1995) Overview of morphological changes in enamel organ cells associated with major events in amelogenesis. Int J Dev Biol 39:153–161PubMedGoogle Scholar
  77. 77.
    Smith CE, Nanci A (1996) Protein dynamics of amelogenesis. Anat Rec 245:186–207CrossRefPubMedGoogle Scholar
  78. 78.
    Smith CE, Nanci A, Moffatt P (2006) Evidence by signal peptide trap technology for the expression of carbonic anhydrase 6 in rat incisor enamel organs. Eur J Oral Sci 114(Suppl 1):147–153CrossRefPubMedGoogle Scholar
  79. 79.
    Sugimoto T, Ogawa Y, Kuwahara H, Shimazaki M, Yagi T, Sakai A (1988) Histochemical demonstration of carbonic anhydrase activity in the odontogenic cells of the rat incisor. J Dent Res 67:1271–1274CrossRefPubMedGoogle Scholar
  80. 80.
    Sui W, Boyd C, Wright JT (2003) Altered pH regulation during enamel development in the cystic fibrosis mouse incisor. J Dent Res 82:388–392CrossRefPubMedGoogle Scholar
  81. 81.
    Supuran CT (2008) Carbonic anhydrases–an overview. Curr Pharm Des 14:603–614CrossRefPubMedGoogle Scholar
  82. 82.
    Supuran CT (2008) Carbonic anhydrases: novel therapeutic applications for inhibitors and activators. Nat Rev Drug Discov 7:168–181CrossRefPubMedGoogle Scholar
  83. 83.
    Takano Y (1995) Enamel mineralization and the role of ameloblasts in calcium transport. Connect Tissue Res 33:127–137CrossRefPubMedGoogle Scholar
  84. 84.
    Tang L, Fatehi M, Linsdell P (2009) Mechanism of direct bicarbonate transport by the CFTR anion channel. J Cyst Fibros 8:115–121CrossRefPubMedGoogle Scholar
  85. 85.
    Toyosawa S, Ogawa Y, Inagaki T, Ijuhin N (1996) Immunohistochemical localization of carbonic anhydrase isozyme II in rat incisor epithelial cells at various stages of amelogenesis. Cell Tissue Res 285:217–225CrossRefPubMedGoogle Scholar
  86. 86.
    Wright JT, Hall KI, Grubb BR (1996) Enamel mineral composition of normal and cystic fibrosis transgenic mice. Adv Dent Res 10:270–274CrossRefPubMedGoogle Scholar
  87. 87.
    Wright JT, Kiefer CL, Hall KI, Grubb BR (1996) Abnormal enamel development in a cystic fibrosis transgenic mouse model. J Dent Res 75:966–973CrossRefPubMedGoogle Scholar
  88. 88.
    Xu J, Song P, Nakamura S, Miller M, Barone S, Alper SL, Riederer B, Bonhagen J, Arend LJ, Amlal H, Seidler U, Soleimani M (2009) Deletion of the chloride transporter slc26a7 causes distal renal tubular acidosis and impairs gastric acid secretion. J Biol Chem 284:29470–29479CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Yin K, Guo J, Lin W, Robertson SYT, Soleimani M, Paine ML (2017) Deletion of Slc26a1 and Slc26a7 delays enamel mineralization in mice. Front Physiol 8:307CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Yin K, Hacia JG, Zhong Z, Paine ML (2014) Genome-wide analysis of miRNA and mRNA transcriptomes during amelogenesis. BMC Genomics 15:998CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Yin K, Lei Y, Wen X, Lacruz RS, Soleimani M, Kurtz I, Snead ML, White SN, Paine ML (2015) SLC26A gene family participate in pH regulation during enamel maturation. PLoS ONE 10:e0144703CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Yin K, Lin W, Guo J, Sugiyama T, Snead ML, Hacia JG, Paine ML (2017) MiR-153 regulates amelogenesis by targeting endocytotic and endosomal/lysosomal pathways-novel insight into the origins of enamel pathologies. Sci Rep 7:44118CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Zegarelli EV, Kutscher AH, Denning CR, Applebaum E, Fahn BS, Hoffman PJ, Botwick JT, Ragosta JM (1964) Discoloration of the teeth in older children with cystic fibrosis of the pancreas. Am J Dig Dis 9:682–683CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Center for Craniofacial Molecular Biology, Herman Ostrow School of DentistryUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.Department of Orthodontics, Herman Ostrow School of DentistryUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations