Skip to main content

Advertisement

Log in

Maxillary Sinus Lift with Beta-Tricalcium Phosphate (β-TCP) in Edentulous Patients: A Nanotomographic and Raman Study

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Sinus lift elevation restores bone mass at the maxilla in edentulate patients before the placement of dental implants. It consists of opening the lateral side of the sinus and grafting beta-tricalcium phosphate granules (β-TCP) under the olfactory membrane. Bone biopsies were obtained in five patients after 60 weeks. They were embedded undecalcified in poly(methyl methacrylate) (pMMA); blocks were analyzed by nanocomputed tomography (nanoCT); specific areas were studied by Raman microspectroscopy. Remnants of β-TCP were osseointegrated and covered with mineralized bone; osteoid tissue was also filling the inner porosity. Macrophages having engulfed numerous β-TCP grains were observed in marrow spaces. β-TCP was identified by nanoCT as osseointegrated particles and as granules in the cytoplasm of macrophages. Raman microspectroscopy permitted to compare the spectra of β-TCP and bone in different areas. The ratio of the ~820 cm−1 band of pMMA (–CH2 groups) on the ν1 phosphate band at 960 cm−1 reflected tissue hydration because water was substituted by MMA during histological processing. In bone, the ratio of the ~960 cm−1 phosphate to the amide 1 band and the ratio ν2 phosphate band by the 1240–1250 amide III band reflect the mineralization degree. Specific bands of β-TCP were found in osseointegrated β-TCP granules and in the grains phagocytized by the macrophages. The hydration degree was maximal for β-TCP phagocytized by macrophages. Raman microspectroscopy associated with nanoCT is a powerful tool in the analysis of the biomaterial degradation and osseointegration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bohner M (2010) Resorbable biomaterials as bone graft substitutes. Mater Today 13:24–30

    Article  CAS  Google Scholar 

  2. Guillaume B (2016) Dental implants: a review. Morphologie 100:189–198

    Article  CAS  PubMed  Google Scholar 

  3. Chappard D, Terranova L, Mallet R, Mercier P (2015) 3D porous architecture of stacks of beta-TCP granules compared with that of trabecular bone: a microCT, vector analysis, and compression study. Front Endocrinol 6:161

    Article  Google Scholar 

  4. Ndiaye M, Terranova L, Mallet R, Mabilleau G, Chappard D (2015) Three-dimensional arrangement of beta-tricalcium phosphate granules evaluated by microcomputed tomography and fractal analysis. Acta Biomater 11:404–411

    Article  CAS  PubMed  Google Scholar 

  5. Chappard D, Guillaume B, Mallet R, Pascaretti-Grizon F, Baslé MF, Libouban H (2010) Sinus lift augmentation and beta-TCP: a microCT and histologic analysis on human bone biopsies. Micron 41:321–326

    Article  CAS  PubMed  Google Scholar 

  6. Nyangoga H, Aguado E, Goyenvalle E, Baslé MF, Chappard D (2010) A non-steroidal anti-inflammatory drug (ketoprofen) does not delay beta-TCP bone graft healing. Acta Biomater 6:3310–3317

    Article  CAS  PubMed  Google Scholar 

  7. Lu J, Descamps M, Dejou J, Koubi G, Hardouin P, Lemaitre J, Proust JP (2002) The biodegradation mechanism of calcium phosphate biomaterials in bone. J Biomed Mater Res 63:408–412

    Article  CAS  PubMed  Google Scholar 

  8. Chazono M, Tanaka T, Kitasato S, Kikuchi T, Marumo K (2008) Electron microscopic study on bone formation and bioresorption after implantation of beta-tricalcium phosphate in rabbit models. J Orthop Sci 13:550–555

    Article  CAS  PubMed  Google Scholar 

  9. Takayanagi H (2007) Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems. Nat Rev Immunol 7:292–304

    Article  CAS  PubMed  Google Scholar 

  10. Palmer JA, Abberton KM, Mitchell GM, Morrison WA (2014) Macrophage phenotype in response to implanted synthetic scaffolds: an immunohistochemical study in the rat. Cells Tissues Organs 199:169–183

    Article  CAS  PubMed  Google Scholar 

  11. Kajahn J, Franz S, Rueckert E, Forstreuter I, Hintze V, Moeller S, Simon JC (2012) Artificial extracellular matrices composed of collagen i and high sulfated hyaluronan modulate monocyte to macrophage differentiation under conditions of sterile inflammation. Biomatter 2:226–273

    Article  PubMed  PubMed Central  Google Scholar 

  12. Londono R, Badylak SF (2015) Biologic scaffolds for regenerative medicine: mechanisms of in vivo remodeling. Ann Biomed Eng 43:577–592

    Article  PubMed  Google Scholar 

  13. Chen Z, Wu C, Gu W, Klein T, Crawford R, Xiao Y (2014) Osteogenic differentiation of bone marrow mscs by β-tricalcium phosphate stimulating macrophages via bmp2 signalling pathway. Biomaterials 35:1507–1518

    Article  CAS  PubMed  Google Scholar 

  14. Beuvelot J, Pascaretti-Grizon F, Filmon R, Moreau MF, Baslé MF, Chappard D (2011) In vitro assessment of osteoblast and macrophage mobility in presence of β-TCP particles by videomicroscopy. J Biomed Mater Res Part A 96:108–115

    Article  Google Scholar 

  15. Li SP, Dai HL, Yan YH, Cao XY, Zheng QX (2005) Effect of macrophage on degradation of β-TCP ceramics. Key engineering materials. Trans Tech Publications, Zurich, pp 549–552

    Google Scholar 

  16. Xia Z, Zhu T, Du J, Zheng Q, Wang L, Li S, Chang C, Fang S (1994) Macrophages in degradation of collagen/hydroxylapatite (CHA), beta-tricalcium phosphate ceramics (TCP) artificial bone graft. An in vivo study. Chin Med J (Engl) 107:845–849

    CAS  Google Scholar 

  17. Detsch R, Schaefer S, Deisinger U, Ziegler G, Seitz H, Leukers B (2010) In vitro-osteoclastic activity studies on surfaces of 3D printed calcium phosphate scaffolds. J Biomater Appl 26:359–380

    Article  PubMed  Google Scholar 

  18. Choy J, Albers CE, Siebenrock KA, Dolder S, Hofstetter W, Klenke FM (2014) Incorporation of rankl promotes osteoclast formation and osteoclast activity on beta-TCP ceramics. Bone 69:80–88

    Article  CAS  PubMed  Google Scholar 

  19. Kucera T, Sponer P, Urban K, Kohout A (2014) Histological assessment of tissue from large human bone defects repaired with beta-tricalcium phosphate. Eur J Orthop Surg Traumatol 24:1357–1365

    Article  PubMed  Google Scholar 

  20. Schwartzwalder K, Somers H, Somers AV (1963) Method of making porous ceramics. In: 3090094 A, US Patent

  21. Filmon R, Retailleau-Gaborit N, Brossard G, Grizon-Pascaretti F, Baslé MF, Chappard D (2009) Preparation of β-TCP granular material by polyurethane foam technology. Image Anal Stereol 28:1–10

    Google Scholar 

  22. Beebe K (2000) Alcohol/xylene: the unlikely fixative/dehydrant/clearant. J Histotechnol 23:45–50

    Article  Google Scholar 

  23. Paschalis EP, Fratzl P, Gamsjaeger S, Hassler N, Brozek W, Eriksen EF, Rauch F, Glorieux FH, Shane E, Dempster D, Cohen A, Recker R, Klaushofer K (2015) Aging versus postmenopausal osteoporosis: bone composition and maturation kinetics at actively-forming trabecular surfaces of female subjects aged 1–84 years. J Bone Miner Res 31:347–357

    Article  PubMed  Google Scholar 

  24. Chappard D (2014) Technical aspects: How do we best prepare bone samples for proper histological analysis? In: Heymann D (ed) Bone cancer: progression and therapeutic approaches. Academic Press, Elsevier, London, pp 111–120

    Google Scholar 

  25. Akkus O, Polyakova-Akkus A, Adar F, Schaffler MB (2003) Aging of microstructural compartments in human compact bone. J Bone Miner Res 18:1012–1019

    Article  CAS  PubMed  Google Scholar 

  26. Kazanci M, Fratzl P, Klaushofer K, Paschalis EP (2006) Complementary information on in vitro conversion of amorphous (precursor) calcium phosphate to hydroxyapatite from Raman microspectroscopy and wide-angle X-ray scattering. Calcif Tissue Int 79:354–359

    Article  CAS  PubMed  Google Scholar 

  27. Robey PG, Boskey AL (2009) The composition of bone. In: ASBMR (ed) Primer on the bone metabolic diseases and disorders of mineral metabolism, 7th edn. Wiley, Hoboken, pp 32–38

    Google Scholar 

  28. Pascaretti-Grizon F, Libouban H, Camprasse G, Camprasse S, Mallet R, Chappard D (2014) The interface between nacre and bone after implantation in the sheep: a nanotomographic and raman study. J Raman Spectrosc 45:558–564

    Article  CAS  Google Scholar 

  29. Chiappetta N, Gruber B (2006) The role of mast cells in osteoporosis. Semin Arthritis Rheum 36:32–36

    Article  CAS  PubMed  Google Scholar 

  30. Saffar JL, Klapisz-Wolikow M (1990) Changes in mast cell number during the activation phase of an induced synchronized remodeling sequence in the rat. Bone 11:369–372

    Article  CAS  PubMed  Google Scholar 

  31. Baslé MF, Chappard D, Grizon F, Filmon R, Delecrin J, Daculsi G, Rebel A (1993) Osteoclastic resorption of ca-p biomaterials implanted in rabbit bone. Calcif Tissue Int 53:348–356

    Article  PubMed  Google Scholar 

  32. Zerbo IR, Zijderveld SA, de Boer A, Bronckers AL, de Lange G, ten Bruggenkate CM, Burger EH (2004) Histomorphometry of human sinus floor augmentation using a porous beta-tricalcium phosphate: a prospective study. Clin Oral Implant Res 15:724–732

    Article  Google Scholar 

  33. Monchau F, Lefevre A, Descamps M, Belquin-Myrdycz A, Laffargue P, Hildebrand H (2002) In vitro studies of human and rat osteoclast activity on hydroxyapatite, β-tricalcium phosphate, calcium carbonate. Biomol Engin 19:143–152

    Article  CAS  Google Scholar 

  34. Kotani S, Fujita Y, Kitsugi T, Nakamura T, Yamamuro T, Ohtsuki C, Kokubo T (1991) Bone bonding mechanism of beta-tricalcium phosphate. J Biomed Mater Res 25:1303–1315

    Article  CAS  PubMed  Google Scholar 

  35. Chiba S, Anada T, Suzuki K, Saito K, Shiwaku Y, Miyatake N, Baba K, Imaizumi H, Hosaka M, Itoi E (2016) Effect of resorption rate and osteoconductivity of biodegradable calcium phosphate materials on the acquisition of natural bone strength in the repaired bone. J Biomed Mater Res Part A 104:2833–2842

    Article  CAS  Google Scholar 

  36. Gaasbeek RD, Toonen HG, van Heerwaarden RJ, Buma P (2005) Mechanism of bone incorporation of β-TCP bone substitute in open wedge tibial osteotomy in patients. Biomaterials 26:6713–6719

    Article  CAS  PubMed  Google Scholar 

  37. Terranova L, Libouban H, Mallet R, Chappard D (2015) Analysis of beta-tricalcium phosphate granules prepared with different formulations by nano-computed tomography and scanning electron microscopy. J Artif Organs 18:338–345

    Article  CAS  PubMed  Google Scholar 

  38. Aaron JE, Gallagher JC, Nordin BE (1974) Seasonal variation of histological osteomalacia in femoral-neck fractures. Lancet 2:84–85

    Article  CAS  PubMed  Google Scholar 

  39. Meunier PJ (1980) Bone biospy in diagnosis of metabolic bone disease. In: Cohn DV, Talmage RV, Matthews JL (eds) Hormonal control of bone metabolism. Proceedings of the 7th international conference calcium regulating hormones. Excerpta Medica, pp. 109-107

  40. Aguado E, Pascaretti-Grizon F, Gaudin-Audrain C, Goyenvalle E, Chappard D (2014) Beta-TCP granules mixed with reticulated hyaluronic acid induce an increase in bone apposition. Biomed Mater 9:015001

    Article  PubMed  Google Scholar 

  41. Kuszyk BS, Heath DG, Bliss DF, Fishman EK (1996) Skeletal 3-d ct: advantages of volume rendering over surface rendering. Skeletal Radiol 25:207–214

    Article  CAS  PubMed  Google Scholar 

  42. Drebin RA, Carpenter L, Hanrahan P (1988) Volume rendering. ACM Siggraph Computer Graphics. ACM, New York, pp 65–74

    Google Scholar 

  43. Baslé MF, Bertrand G, Guyetant S, Chappard D, Lesourd M (1996) Migration of metal and polyethylene particles from articular prostheses may generate lymphadenopathy with histiocytosis. J Biomed Mater Res 30:157–163

    Article  PubMed  Google Scholar 

  44. Riihonen R, Supuran CT, Parkkila S, Pastorekova S, Väänänen HK, Laitala-Leinonen T (2007) Membrane-bound carbonic anhydrases in osteoclasts. Bone 40:1021–1031

    Article  CAS  PubMed  Google Scholar 

  45. Schaefer S, Detsch R, Uhl F, Deisinger U, Ziegler G (2011) How degradation of calcium phosphate bone substitute materials is influenced by phase composition and porosity. Adv Eng Mater 13:342–350

    Article  CAS  Google Scholar 

  46. Stout RD, Jiang C, Matta B, Tietzel I, Watkins SK, Suttles J (2005) Macrophages sequentially change their functional phenotype in response to changes in microenvironmental influences. J Immunol 175:342–349

    Article  CAS  PubMed  Google Scholar 

  47. Aparicio S, Doty S, Camacho N, Paschalis E, Spevak L, Mendelsohn R, Boskey A (2002) Optimal methods for processing mineralized tissues for Fourier transform infrared microspectroscopy. Calcif Tissue Int 70:422–429

    Article  CAS  PubMed  Google Scholar 

  48. Carson FL, Hladik C (2009) Fixation. In: Carson FL, Hladik C (eds) Histotechnology: A Self-Instructional Text. American Society for Clinical Pathology Press, Chicago, IL, pp 9–13

    Google Scholar 

  49. Strawn S, White J, Marshall G, Gee L, Goodis H, Marshall S (1996) Spectroscopic changes in human dentine exposed to various storage solutions—short term. J Dent 24:417–423

    Article  CAS  PubMed  Google Scholar 

  50. Mason JT, O’leary TJ (1991) Effects of formaldehyde fixation on protein secondary structure: a calorimetric and infrared spectroscopic investigation. J Histochem Cytochem 39:225–229

    Article  CAS  PubMed  Google Scholar 

  51. Pleshko NL, Boskey AL, Mendelsohn R (1992) An infrared study of the interaction of polymethyl methacrylate with the protein and mineral components of bone. J Histochem Cytochem 40:1413–1417

    Article  CAS  PubMed  Google Scholar 

  52. Pleshko NL, Boskey AL, Mendelsohn R (1992) An FT-IR microscopic investigation of the effects of tissue preservation on bone. Calcif Tissue Int 51:72–77

    Article  CAS  PubMed  Google Scholar 

  53. De Aza P, Santos C, Pazo A, De Aza S, Cusco R, Artus L (1997) Vibrational properties of calcium phosphate compounds. 1. Raman spectrum of β-tricalcium phosphate. Chem Mater 9:912–915

    Article  Google Scholar 

  54. Kumar PN, Mishra SK, Kannan S (2015) Probing the limit of magnesium uptake by β-tricalcium phosphate in biphasic mixtures formed from calcium deficient apatites. J Solid State Chem 231:13–19

    Article  CAS  Google Scholar 

  55. Quillard S, Paris M, Deniard P, Gildenhaar R, Berger G, Obadia L, Bouler J-M (2011) Structural and spectroscopic characterization of a series of potassium-and/or sodium-substituted β-tricalcium phosphate. Acta Biomater 7:1844–1852

    Article  CAS  PubMed  Google Scholar 

  56. Willis H, Zichy V, Hendra P (1969) The laser-raman and infra-red spectra of poly (methyl methacrylate). Polymer 10:737–746

    Article  CAS  Google Scholar 

  57. Nabiev IR, Savchenko VA, Efremov ES (1983) Surface-enhanced raman spectra of aromatic amino acids and proteins adsorbed by silver hydrosols. J Raman Spectrosc 14:375–379

    Article  CAS  Google Scholar 

  58. Frushour BG, Koenig JL (1975) Raman scattering of collagen, gelatin, and elastin. Biopolymers 14:379–391

    Article  CAS  PubMed  Google Scholar 

  59. Movasaghi Z, Rehman S, Rehman IU (2007) Raman spectroscopy of biological tissues. Appl Spectrosc Rev 42:493–541

    Article  CAS  Google Scholar 

  60. Boer H, van Eek WH (1979) The penetration of the embedding medium methyl methacrylate in undecalcified bone. Microsc Acta 81:181–188

    CAS  PubMed  Google Scholar 

  61. Mandair GS, Morris MD (2015) Contributions of Raman spectroscopy to the understanding of bone strength. Bonekey Rep 4:620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gamsjaeger S, Masic A, Roschger P, Kazanci M, Dunlop JW, Klaushofer K, Paschalis EP, Fratzl P (2010) Cortical bone composition and orientation as a function of animal and tissue age in mice by Raman spectroscopy. Bone 47:392–399

    Article  PubMed  Google Scholar 

  63. Gullekson C, Lucas L, Hewitt K, Kreplak L (2011) Surface-sensitive Raman spectroscopy of collagen I fibrils. Biophys J 100:1837–1845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Mrs Laurence Lechat for secretarial assistance, Mrs N. Retailleau and S. Lemière for microCT and histotechnology. E. Paschalis and G. Mabilleau are thanked for helpful discussions. This work was made possible by grants from ANR, program LabCom “NextBone”. The authors thank Kasios, 18 Chemin de la Violette, 31240 L’Union—France—for providing the β-TCP granules.

Author information

Authors and Affiliations

Authors

Contributions

The study was conceived by DC and BG. Surgery and patient handling were done by BG. Experimental analyses were designed by DC and performed by the acknowledged technicians. Histopathological analysis was done by DC. Raman analysis was done by FPG, SEM by BA, and nanoCT by LT and HL. The paper was written by DC and FPG, and the final manuscript was approved by all of the authors.

Corresponding author

Correspondence to Daniel Chappard.

Ethics declarations

Conflict of interest

Florence Pascaretti-Grizon, Bernard Guillaume, Lisa Terranova, Baptiste Arbez, Hélène Libouban, and Daniel Chappard declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

An informed consent was obtained from each subject. This experimental protocol was approved by the ethical committee of the French Collège d’Implantologie and was done in accordance with the institutional guidelines of the French Ethical Committee and with the 1964 Helsinki declaration and its later amendments.

Electronic supplementary material

Below is the link to the electronic supplementary material.

223_2017_280_MOESM1_ESM.mp4

Supplementary material 1 Video movie of the block of the bone biopsy presented on Fig. 2A-B focusing on the interface between β-TCP granules (light grey) and bone trabeculae directly anchored on the granules (darker grey). In the marrow spaces, note the presence of numerous macrophages (in light grey) responsible of a “milky way” appearance. These phagocytic cells are revealed due to the presence of numerous β-TCP grains in their cytoplasm. (MP4 8028 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pascaretti-Grizon, F., Guillaume, B., Terranova, L. et al. Maxillary Sinus Lift with Beta-Tricalcium Phosphate (β-TCP) in Edentulous Patients: A Nanotomographic and Raman Study. Calcif Tissue Int 101, 280–290 (2017). https://doi.org/10.1007/s00223-017-0280-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-017-0280-5

Keywords

Navigation