Skip to main content
Log in

Location of Vertebral Fractures is Associated with Bone Mineral Density and History of Traumatic Injury

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

The upper and lower thoracolumbar spine have been associated with different biomechanical outcomes. This concept, as it applies to osteoporotic fracture risk, has not been well documented. This was a case-control study of 120 patients seen in an osteoporosis clinic. Vertebral fractures were identified from lateral radiographs using Genant’s semi-quantitative assessment method. An association between bone mineral density (BMD) T-scores and vertebral fracture location was assessed. In an additional analysis, the association between a history of any traumatic injury and possible predictor variables was also explored. The median age of patients was 75 (IQR 67–80), and 84.2% of patients were female. A history of trauma was reported by 46.7% of patients. A vertebral fracture in the lower thoracolumbar spine (T11–L4) was associated with significantly higher femoral neck (p < 0.001), lumbar (p = 0.005), trochanteric (p = 0.002), intertrochanteric (p < 0.001), and total hip (p = 0.0006) BMD T-scores. The odds of having a femoral neck (OR 0.24, 95% CI 0.07–0.75, p = 0.01) or total hip (OR 0.19, 95% CI 0.06–0.65, p = 0.008) T-score less than −2.5 was also lower among patients with vertebral fractures in the lower thoracolumbar spine. A fracture in the upper thoracolumbar spine (T4–T10) decreased the odds of having a history of traumatic injury (OR 0.32, 95% CI 0.14–0.76, p = 0.01), while a non-vertebral fracture increased the odds of such an injury (OR 2.41, 95% CI 1.10–5.32, p = 0.03). Vertebral fractures in the lower thoracolumbar spine are associated with higher BMD T-scores. This should be studied further to understand possible correlations with patients’ future fracture risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Looker A, Orwoll E, Johnston C, Lindsay R, Wahner H, Dunn W, Calvo M, Harris T, Heyse S (1997) Prevalence of low femoral bone density in older U.S. adults from NHANES III. J Bone Miner Res 12(11):1761–1768

    Article  CAS  PubMed  Google Scholar 

  2. Kanis J, Melton L, Christiansen C, Johnston C, Khaltaev N (1994) Perspective: the diagnosis of osteoporosis. J Bone Miner Res 9(8):1137–1141

    Article  CAS  PubMed  Google Scholar 

  3. Kanis J, The WHO Study Group (1994) Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. Osteoporos Int 4:368–381

    Article  CAS  PubMed  Google Scholar 

  4. Ioannidis B, Papaioannou A, Hopman WM, Akhtar-Danesh N, Anastassiades T, Pickard L, Kennedy CC, Prior JC, Olszynski WP, Davison KS, Goltzman D, Thabane L, Gafni A, Papadimitropoulos EA, Brown JP, Josse RG, Hanley DA, Adachi JD (2009) Relation between fractures and mortality: results from the Canadian Multicentre Osteoporosis Study. CMAJ 181(5):265–271

    Article  PubMed  PubMed Central  Google Scholar 

  5. Papaioannou A, Adachi JD, Parkinson W, Stephenson G, Bédard M (2001) Lengthy hospitalization associated with vertebral fractures despite control for comorbid conditions. Osteoporos Int 12(10):870–874

    Article  CAS  PubMed  Google Scholar 

  6. Browner SR, Seeley WS, Vogt DG, Cummings TM (1991) Non-trauma mortality in elderly women with low bone mineral density. Lancet 338:355–358

    Article  CAS  PubMed  Google Scholar 

  7. Johnell O, Kanis JA (2004) An estimate of the worldwide prevalence, mortality and disability associated with hip fracture. Osteoporos Int 15(11):897–902

    Article  CAS  PubMed  Google Scholar 

  8. Ooms ME, Lips P, Van Lingen A, Valkenburg HA (1993) Determinants of bone mineral density and risk factors for osteoporosis in healthy elderly women. J Bone Miner Res 8(6):669–675

    Article  CAS  PubMed  Google Scholar 

  9. Arden NK, Baker J, Hogg C, Baan K, Spector TD (1996) The heritability of bone mineral density, ultrasound of the calcaneus and hip axis length: a study of postmenopausal twins. J Bone Miner Res 11(4):530–534

    Article  CAS  PubMed  Google Scholar 

  10. Law MR, Hackshaw AK (1997) A meta-analysis of cigarette smoking, bone mineral density and risk of hip fracture: recognition of a major effect. BMJ 315:841–846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ravn P, Cizza G, Bjarnason NH, Thompson D, Daley M, Wasnich RD, Mcclung M, Hosking D, Yates AJ, Christiansen C (1999) Low body mass index is an important risk factor for low bone mass and increased bone loss in early postmenopausal women. J Bone Miner Res 14(9):1622–1627

    Article  CAS  PubMed  Google Scholar 

  12. Kroger H, Tuppurainen M, Honkanen R, Alhava E, Saarikoski S (1994) Bone mineral density and risk factors for osteoporosis: a population-based study of 1600 perimenopausal women. Calcif Tissue Int 55(1):1–7

    Article  CAS  PubMed  Google Scholar 

  13. Lips P (1997) Epidemiology and predictors of fractures associated with osteoporosis. Am J Med 103(2A):3S–8S

    Article  CAS  PubMed  Google Scholar 

  14. Cummings SR, Black DM, Thompson DE, Applegate WB, Barrett-Connor E, Musliner TA, Palermo L, Prineas R, Rubin SM, Scott JC, Vogt T, Wallace R, Yates AJ, LaCroix AZ (1998) Effect of alendronate on risk of fracture in women with low bone density but without vertebral fractures: results from the Fracture Intervention Trial. JAMA 280(24):2077–2082

    Article  CAS  PubMed  Google Scholar 

  15. McClung MR, Geusens P, Miller PD, Zippel H et al (2001) Effect of risedronate on the risk of hip fracture in elderly women. N Engl J Med 344(5):333–340

    Article  CAS  PubMed  Google Scholar 

  16. Genant HK, Jergas M, Palermo L, Nevitt M, Valentin RS, Black D, Cummings SR (1996) Comparison of semiquantitative visual and quantitative morphometric assessment of prevalent and incident vertebral fractures in osteoporosis. J Bone Miner Res 11(7):984–996

    Article  CAS  PubMed  Google Scholar 

  17. Van der Klift M, De Laet CEDH, McCloskey EV, Hofman A, Pols HAP (2002) The incidence of vertebral fractures in men and women: the Rotterdam study. J Bone Miner Res 17(6):1051–1056

    Article  PubMed  Google Scholar 

  18. Watt J, Cox L, Crilly RG (2015) Distribution of vertebral fractures varies among patients according to hip fracture type. Osteoporos Int 26:885–890

    Article  CAS  PubMed  Google Scholar 

  19. Nevitt MC, Ross PD, Palermo L, Musliner T, Genant HK, Thompson DE (1999) Association of prevalent vertebral fractures, bone density, and alendronate treatment with incident vertebral fractures: effect of number and spinal location of fractures. Bone 25(5):613–619

    Article  CAS  PubMed  Google Scholar 

  20. Siris ES, Chen YT, Abbott TA, Barrett-Connor E, Miller PD, Wehren LE, Berger ML (2004) Bone mineral density thresholds for pharmacological intervention to prevent fractures. Arch Intern Med 164(10):1108–1112

    Article  PubMed  Google Scholar 

  21. Sanders KM, Pasco JA, Ugoni AM, Nicholson GC, Seeman E, Martin TJ, Skoric B, Panahi S, Kotowicz MA (1998) The exclusion of high trauma fractures may underestimate the prevalence of bone fragility fractures in the community: the Geelong Osteoporosis Study. J Bone Miner Res 13(8):1337–1342

    Article  CAS  PubMed  Google Scholar 

  22. Craig SJ, Youssef PP, Vaile JH, Sullivan L, Bleasel JF (2011) Intravenous zoledronic acid and oral alendronate in patients with a low trauma fracture: experience from an osteoporosis clinic. Intern Med J 41(2):186–190

    Article  CAS  PubMed  Google Scholar 

  23. Jarvinen TLN, Sievanen H, Khan KM, Heinonen A, Kannus P (2008) Shifting the focus in fracture prevention from osteoporosis to falls. BMJ 336:124–126

    Article  PubMed  PubMed Central  Google Scholar 

  24. Yoganandan N, Arun MWJ, Stemper BD, Pintar FA, Maiman DJ (2013) Biomechanics of human thoracolumbar spinal column trauma from vertical impact loading. Ann Adv Automot Med 57:155–166

    PubMed  PubMed Central  Google Scholar 

  25. Ivancic PC (2014) Biomechanics of thoracolumbar burst and chance-type fractures during fall from height. Global. Spine J 4:161–168

    Google Scholar 

  26. Campbell-Kyureghyan NH, Yalla SV, Voor M, Burnett D (2011) Effect of orientation on measured failure strengths of thoracic and lumbar spine segments. J Mech Behav Biomed Mater 4(4):549–557

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer Watt.

Ethics declarations

Conflict of interest

Jennifer Watt and Richard Crilly declare that they have no conflicts of interest.

Human and Animal Rights

This article does not contain any studies with animals performed by any of the authors.

Informed Consent

For this type of study formal consent is not required.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Watt, J., Crilly, R. Location of Vertebral Fractures is Associated with Bone Mineral Density and History of Traumatic Injury. Calcif Tissue Int 100, 412–419 (2017). https://doi.org/10.1007/s00223-017-0244-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-017-0244-9

Keywords

Navigation