Skip to main content

Advertisement

Log in

Advanced Glycation End Product 3 (AGE3) Increases Apoptosis and the Expression of Sclerostin by Stimulating TGF-β Expression and Secretion in Osteocyte-Like MLO-Y4-A2 Cells

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Advanced glycation end products (AGEs) cause bone fragility due to deterioration in bone quality. We previously reported that AGE3 induced apoptosis and inhibited differentiation via increased transforming growth factor (TGF)-β signaling in osteoblastic cells. Additionally, we demonstrated that AGE3 increased apoptosis and sclerostin expression and decreased receptor activator of nuclear factor-κB ligand (RANKL) expression in osteocyte-like cells. However, it remains unclear whether TGF-β signaling is involved in the effects of AGEs on apoptosis and the expression of sclerostin and RANKL in osteocytes. Effects of AGE3 on apoptosis of mouse osteocyte-like MLO-Y4-A2 cells were examined by DNA fragmentation ELISA. Expression of TGF-β, sclerostin, and RANKL was evaluated using real-time PCR, Western blotting, and ELISA kits. To block TGF-β signaling, we used SD208, a TGF-β type I receptor kinase inhibitor. AGE3 (200 µg/mL) significantly increased apoptosis and mRNA expression of Sost, the gene encoding sclerostin, and decreased Rankl mRNA expression in MLO-Y4-A2 cells. AGE3 significantly increased the expression of TGF-β. Co-incubation of SD208 with AGE3 significantly rescued AGE3-induced apoptosis in a dose-dependent manner. Moreover, SD208 restored AGE3-increased mRNA and protein expression of sclerostin. In contrast, SD208 did not affect AGE3-decreased mRNA and protein expression of RANKL. These findings suggest that AGE3 increases apoptosis and sclerostin expression through increasing TGF-β expression in osteocytes, and that AGE3 decreases RANKL expression independent of TGF-β signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

T2DM:

Type 2 Diabetes mellitus

BMD:

Bone mineral density

AGEs:

Advanced glycation end products

TGF-β:

Transforming growth factor-β

RANKL:

Receptor activator of Nuclear factor-κB ligand

BSA:

Bovine serum albumin

α-MEM:

α-minimum essential medium

OPG:

Osteoprotegerin

References

  1. Johnell O, Kanis JA, Oden A, Sernbo I, Redlund-Johnell I, Petterson C, de Laet C, Jonsson B (2004) Mortality after osteoporotic fractures. Osteoporos Int 15:38–42

    Article  CAS  PubMed  Google Scholar 

  2. Bliuc D, Nguyen ND, Milch VE, Nguyen TV, Eisman JA, Center JR (2009) Mortality risk associated with low-trauma osteoporotic fracture and subsequent fracture in men and women. JAMA 301:513–521

    Article  CAS  PubMed  Google Scholar 

  3. Garratt AM, Schmidt L, Fitzpatrick R (2002) Patient-assessed health outcome measures for diabetes: a structured review. Diabeti Med 19:1–11

    Article  CAS  Google Scholar 

  4. Jain V, Shivkumar S, Gupta O (2014) Health-related quality of life (hr-qol) in patients with type 2 diabetes mellitus. N Am J Med Sci 6:96–101

    Article  PubMed  PubMed Central  Google Scholar 

  5. World Health Organization (1994) Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. Report of a WHO Study Group World Health Organization technical report series 843:1–129

  6. Schwartz AV, Sellmeyer DE, Ensrud KE, Cauley JA, Tabor HK, Schreiner PJ, Jamal SA, Black DM, Cummings SR (2001) Older women with diabetes have an increased risk of fracture: a prospective study. J Clin Endocrinol Metab 86:32–38

    Article  CAS  PubMed  Google Scholar 

  7. Vestergaard P (2007) Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes–a meta-analysis. Osteoporos Int 18:427–444

    Article  CAS  PubMed  Google Scholar 

  8. Yamamoto M, Yamaguchi T, Yamauchi M, Kaji H, Sugimoto T (2009) Diabetic patients have an increased risk of vertebral fractures independent of BMD or diabetic complications. J Bone Miner Res 24:702–709

    Article  CAS  PubMed  Google Scholar 

  9. Yamamoto M, Yamaguchi T, Yamauchi M, Yano S, Sugimoto T (2008) Serum pentosidine levels are positively associated with the presence of vertebral fractures in postmenopausal women with type 2 diabetes. J Clin Endocrinol Metab 93:1013–1019

    Article  CAS  PubMed  Google Scholar 

  10. Schwartz AV, Garnero P, Hillier TA, Sellmeyer DE, Strotmeyer ES, Feingold KR, Resnick HE, Tylavsky FA, Black DM, Cummings SR, Harris TB, Bauer DC (2009) Pentosidine and increased fracture risk in older adults with type 2 diabetes. J Clin Endocrinol Metab 94:2380–2386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Saito M, Fujii K, Mori Y, Marumo K (2006) Role of collagen enzymatic and glycation induced cross-links as a determinant of bone quality in spontaneously diabetic WBN/Kob rats. Osteoporos Int 17:1514–1523

    Article  CAS  PubMed  Google Scholar 

  12. Okazaki K, Yamaguchi T, Tanaka K, Notsu M, Ogawa N, Yano S, Sugimoto T (2012) Advanced glycation end products (AGEs), but not high glucose, inhibit the osteoblastic differentiation of mouse stromal ST2 cells through the suppression of osterix expression, and inhibit cell growth and increasing cell apoptosis. Calcif Tissue Int 91:286–296

    Article  CAS  PubMed  Google Scholar 

  13. Ogawa N, Yamaguchi T, Yano S, Yamauchi M, Yamamoto M, Sugimoto T (2007) The combination of high glucose and advanced glycation end-products (AGEs) inhibits the mineralization of osteoblastic MC3T3-E1 cells through glucose-induced increase in the receptor for AGEs. Horm Metab Res 39:871–875

    Article  CAS  PubMed  Google Scholar 

  14. Tang SY, Vashishth D (2011) The relative contributions of non-enzymatic glycation and cortical porosity on the fracture toughness of aging bone. J Biomech 44:330–336

    Article  CAS  PubMed  Google Scholar 

  15. Yamagishi S, Amano S, Inagaki Y, Okamoto T, Koga K, Sasaki N, Yamamoto H, Takeuchi M, Makita Z (2002) Advanced glycation end products-induced apoptosis and overexpression of vascular endothelial growth factor in bovine retinal pericytes. Biochem Biophys Res Commun 290:973–978

    Article  CAS  PubMed  Google Scholar 

  16. Yamagishi S, Inagaki Y, Okamoto T, Amano S, Koga K, Takeuchi M, Makita Z (2002) Advanced glycation end product-induced apoptosis and overexpression of vascular endothelial growth factor and monocyte chemoattractant protein-1 in human-cultured mesangial cells. J Biol Chem 277:20309–20315

    Article  CAS  PubMed  Google Scholar 

  17. Notsu M, Yamaguchi T, Okazaki K, Tanaka K, Ogawa N, Kanazawa I, Sugimoto T (2014) Advanced glycation end product 3 (AGE3) suppresses the mineralization of mouse stromal ST2 cells and human mesenchymal stem cells by increasing TGF-beta expression and secretion. Endocrinology 155:2402–2410

    Article  PubMed  Google Scholar 

  18. Tanaka K, Yamaguchi T, Kanazawa I, Sugimoto T (2015) Effects of high glucose and advanced glycation end products on the expressions of sclerostin and RANKL as well as apoptosis in osteocyte-like MLO-Y4-A2 cells. Biochem Biophys Res Commun 461:193–199

    Article  CAS  PubMed  Google Scholar 

  19. Chung AC, Zhang H, Kong YZ, Tan JJ, Huang XR, Kopp JB, Lan HY (2010) Advanced glycation end-products induce tubular CTGF via TGF-beta-independent Smad3 signaling. JASN 21:249–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shimizu F, Sano Y, Haruki H, Kanda T (2011) Advanced glycation end-products induce basement membrane hypertrophy in endoneurial microvessels and disrupt the blood-nerve barrier by stimulating the release of TGF-beta and vascular endothelial growth factor (VEGF) by pericytes. Diabetologia 54:1517–1526

    Article  CAS  PubMed  Google Scholar 

  21. Pelton RW, Saxena B, Jones M, Moses HL, Gold LI (1991) Immunohistochemical localization of TGF beta 1, TGF beta 2, and TGF beta 3 in the mouse embryo: expression patterns suggest multiple roles during embryonic development. J Cell Biol 115:1091–1105

    Article  CAS  PubMed  Google Scholar 

  22. Loots GG, Keller H, Leupin O, Murugesh D, Collette NM, Genetos DC (2012) TGF-beta regulates sclerostin expression via the ECR5 enhancer. Bone 50:663–669

    Article  CAS  PubMed  Google Scholar 

  23. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  24. Kanazawa I, Yamaguchi T, Yano S, Yamauchi M, Sugimoto T (2010) Fasudil hydrochloride induces osteoblastic differentiation of stromal cell lines, C3H10T1/2 and ST2, via bone morphogenetic protein-2 expression. Endocr J 57:415–421

    Article  CAS  PubMed  Google Scholar 

  25. Massague J, Blain SW, Lo RS (2000) TGFbeta signaling in growth control, cancer, and heritable disorders. Cell 103:295–309

    Article  CAS  PubMed  Google Scholar 

  26. Janssens K, ten Dijke P, Janssens S, van Hul W (2005) Transforming growth factor-beta1 to the bone. Endocr Rev 26:743–774

    Article  CAS  PubMed  Google Scholar 

  27. Balooch G, Balooch M, Nalla RK, Schilling S, Filvaroff EH, Marshall GW, Marshall SJ, Ritchie RO, Derynck R, Alliston T (2005) TGF-beta regulates the mechanical properties and composition of bone matrix. Proc Natl Acad Sci USA 102:18813–18818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chang JL, Brauer DS, Johnson J, Chen CG, Akil O, Balooch G, Humphrey MB, Chin EN, Porter AE, Butcher K, Ritchie RO, Schneider RA, Lalwani A, Derynck R, Marshall GW, Marshall SJ, Lustig L, Alliston T (2010) Tissue-specific calibration of extracellular matrix material properties by transforming growth factor-beta and Runx2 in bone is required for hearing. EMBO Rep 11:765–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mohammad KS, Chen CG, Balooch G, Stebbins E, McKenna CR, Davis H, Niewolna M, Peng XH, Nguyen DH, Ionova-Martin SS, Bracey JW, Hogue WR, Wong DH, Ritchie RO, Suva LJ, Derynck R, Guise TA, Alliston T (2009) Pharmacologic inhibition of the TGF-beta type I receptor kinase has anabolic and anti-catabolic effects on bone. PLoS one 4:e5275

    Article  PubMed  PubMed Central  Google Scholar 

  30. Edwards JR, Nyman JS, Lwin ST, Moore MM, Esparza J, O’Quinn EC, Hart AJ, Biswas S, Patil CA, Lonning S, Mahadevan-Jansen A, Mundy GR (2010) Inhibition of TGF-beta signaling by 1D11 antibody treatment increases bone mass and quality in vivo. J Bone Miner Res 25:2419–2426

    Article  CAS  PubMed  Google Scholar 

  31. Aguirre JI, Plotkin LI, Stewart SA, Weinstein RS, Parfitt AM, Manolagas SC, Bellido T (2006) Osteocyte apoptosis is induced by weightlessness in mice and precedes osteoclast recruitment and bone loss. J Bone Miner Res 21:605–615

    Article  PubMed  Google Scholar 

  32. Nguyen J, Tang SY, Nguyen D, Alliston T (2013) Load regulates bone formation and Sclerostin expression through a TGFbeta-dependent mechanism. PloS one 8:e53813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jilka RL, Noble B, Weinstein RS (2013) Osteocyte apoptosis. Bone 54:264–271

    Article  PubMed  Google Scholar 

  34. Komori T (2014) Mouse models for the evaluation of osteocyte functions. J Bone Metab 21:55–60

    Article  PubMed  PubMed Central  Google Scholar 

  35. Burghardt AJ, Issever AS, Schwartz AV, Davis KA, Masharani U, Majumdar S, Link TM (2010) High-resolution peripheral quantitative computed tomographic imaging of cortical and trabecular bone microarchitecture in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab 95:5045–5055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yamamoto M, Yamauchi M, Sugimoto T (2013) Elevated sclerostin levels are associated with vertebral fractures in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab 98:4030–4037

    Article  CAS  PubMed  Google Scholar 

  37. Nakashima T, Hayashi M, Fukunaga T, Kurata K, Oh-Hora M, Feng JQ, Bonewald LF, Kodama T, Wutz A, Wagner EF, Penninger JM, Takayanagi H (2011) Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat Med 17:1231–1234

    Article  CAS  PubMed  Google Scholar 

  38. Takai H, Kanematsu M, Yano K, Tsuda E, Higashio K, Ikeda K, Watanabe K, Yamada Y (1998) Transforming growth factor-beta stimulates the production of osteoprotegerin/osteoclastogenesis inhibitory factor by bone marrow stromal cells. J Biol Chem 273:27091–27096

    Article  CAS  PubMed  Google Scholar 

  39. Soro-Paavonen A, Watson AM, Li J, Paavonen K, Koitka A, Calkin AC, Barit D, Coughlan MT, Drew BG, Lancaster GI, Thomas M, Forbes JM, Nawroth PP, Bierhaus A, Cooper ME, Jandeleit-Dahm KA (2008) Receptor for advanced glycation end products (RAGE) deficiency attenuates the development of atherosclerosis in diabetes. Diabetes 57:2461–2469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sourris KC, Forbes JM (2009) Interactions between advanced glycation end-products (AGE) and their receptors in the development and progression of diabetic nephropathy - are these receptors valid therapeutic targets. Curr Drug Targets 10:42–50

    Article  CAS  PubMed  Google Scholar 

  41. Li D, Lei C, Zhang S, Liu M, Wu B (2015) Blockade of high mobility group box-1 signaling via the receptor for advanced glycation end-products ameliorates inflammatory damage after acute intracerebral hemorrhage. Neurosci Lett 609:109–119

    Article  CAS  PubMed  Google Scholar 

  42. Nadatani Y, Watanabe T, Tanigawa T, Ohkawa F, Takeda S, Higashimori A, Sogawa M, Yamagami H, Shiba M, Watanabe K, Tominaga K, Fujiwara Y, Takeuchi K, Arakawa T (2013) High-mobility group box 1 inhibits gastric ulcer healing through Toll-like receptor 4 and receptor for advanced glycation end products. PLoS one 8:e80130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Franke S, Ruster C, Pester J, Hofmann G, Oelzner P, Wolf G (2011) Advanced glycation end products affect growth and function of osteoblasts. Clin Exp Rheumatol 29:650–660

    CAS  PubMed  Google Scholar 

  44. Yang K, Wang XQ, He YS, Lu L, Chen QJ, Liu J, Shen WF (2010) Advanced glycation end products induce chemokine/cytokine production via activation of p38 pathway and inhibit proliferation and migration of bone marrow mesenchymal stem cells. Cardiovasc Diabetol 9:66

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

MN, IK, and TY were responsible for designing and conducting the study. MN performed the experiments and analyzed the data. AT, MY, KT, and TS contributed equipment/materials. MN and IK wrote the paper. All authors approved the final version. IK takes responsibility for the integrity of the data analysis. The authors thank Keiko Nagira for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ippei Kanazawa.

Ethics declarations

Conflict of interest

Masakazu Notsu, Ippei Kanazawa, Ayumu Takeno, Maki Yokomoto-Umakoshi, Ken-ichiro Tanaka, Toru Yamaguchi, and Toshitsugu Sugimoto have no potential conflict of interest to disclose.

Research Involving Human and Animal Rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study formal consent is not required.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Notsu, M., Kanazawa, I., Takeno, A. et al. Advanced Glycation End Product 3 (AGE3) Increases Apoptosis and the Expression of Sclerostin by Stimulating TGF-β Expression and Secretion in Osteocyte-Like MLO-Y4-A2 Cells. Calcif Tissue Int 100, 402–411 (2017). https://doi.org/10.1007/s00223-017-0243-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-017-0243-x

Keywords

Navigation