Skip to main content

Advertisement

Log in

Stimulation of Osteogenic Differentiation by Saikosaponin-A in Bone Marrow Stromal Cells Via WNT/β-Catenin Pathway

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Saikosaponin-A (SA), a class of native compound with numerous biological activities, may exert protective effect against postmenopausal bone loss. However, it remains unknown whether SA regulates the osteogenic differentiation of bone marrow stromal cells (BMSCs) in the treatment and prevention of osteoporosis. In this study, BMSCs were treated with various concentrations of SA to stimulate osteogenic differentiation over a 14-day period. Additionally, a canonical ovariectomized (OVX) mouse model was used to evaluate the effect of 3-month SA treatment in preventing postmenopausal osteoporosis. In vitro, we found that SA promotes alkaline phosphatase activity/staining and Alizarin red assay, stimulated the expression of osteogenic markers, i.e., runt-related transcription factor 2 (Runx2), osterix, osteopontin, and osteocalcin (OCN) in BMSCs. In vivo, the trabecular number, trabecular thickness, and trabecular bone mineral density of the distal femoral metaphysis were significantly increased in OVX mice treated intraperitoneally with SA for 3 months compared with OVX mice that not treated with SA. Moreover, the expression of Runx2 and OCN in OVX + SA mice was significantly increased than that in OVX mice. Finally, we found that SA activated the WNT/β-catenin pathway and the expression of several downstream genes including T-cell factor-1 and lymphoid enhancer factor-1. Inhibition of WNT/β-catenin pathway by Dickkopf-related protein 1 blocked the positive role of SA on osteogenesis. Therefore, SA promoted the osteogenic differentiation of BMSCs through WNT/β-catenin signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Meng J, Ma X, Wang N, Jia M, Bi L, Wang Y, Li M, Zhang H, Xue X, Hou Z, Zhou Y, Yu Z, He G, Luo X (2016) Activation of GLP-1 receptor promotes bone marrow stromal cell osteogenic differentiation through β-catenin. Stem Cell Rep 6:633

    Article  CAS  Google Scholar 

  2. Li SF, Tang JJ, Chen J, Zhang P, Wang T, Chen TY, Yan B, Huang B, Wang L, Huang MJ, Zhang ZM, Jin DD (2015) Regulation of bone formation by baicalein via the mTORC1 pathway. Drug Des Dev Ther 9:5169–5183

    Google Scholar 

  3. Wang D, Ma W, Wang F, Dong J, Wang D, Sun B, Wang B (2015) Stimulation of Wnt/β-catenin signaling to improve bone development by naringin via interacting with AMPK and Akt. Cell Physiol Biochem 36:1563–1576

    Article  CAS  PubMed  Google Scholar 

  4. Li M, Wu W, Tan L, Mu D, Zhu D, Wang J, Zhao B (2015) Low-magnitude mechanical vibration regulates expression of osteogenic proteins in ovariectomized rats. Biochem Biophys Res Commun 465:344–348

    Article  CAS  PubMed  Google Scholar 

  5. Curtis JR, Cai Q, Wade SW, Stolshek BS, Adams JL, Balasubramanian A, Viswanathan HN, Kallich JD (2013) Osteoporosis medication adherence: physician perceptions vs. patients’ utilization. Bone 55:1–6

    Article  PubMed  PubMed Central  Google Scholar 

  6. Tao X, Qi Y, Xu L, Yin L, Han X, Xu Y, Wang C, Sun H, Peng J (2016) Dioscin reduces ovariectomy-induced bone loss by enhancing osteoblastogenesis and inhibiting osteoclastogenesis. Pharmacol Res 108:90–101

    Article  CAS  PubMed  Google Scholar 

  7. Lewiecki EM (2011) New targets for intervention in the treatment of postmenopausal osteoporosis. Nat Rev Rheumatol 7:631–638

    Article  CAS  PubMed  Google Scholar 

  8. Mulder JE, Kolatkar NS, LeBoff MS (2006) Drug insight: existing and emerging therapies for osteoporosis. Nat Clin Pract Endocrinol Metab 2:670–680

    Article  CAS  PubMed  Google Scholar 

  9. Chen JS, Sambrook PN (2012) Antiresorptive therapies for osteoporosis: a clinical overview. Nat Rev Endocrinol 8:81–91

    Article  CAS  Google Scholar 

  10. Zhou C, Liu W, He W, Wang H, Chen Q, Song H (2015) Saikosaponin a inhibits RANKL-induced osteoclastogenesis by suppressing NF-kappaB and MAPK pathways. Int Immunopharmacol 25:49–54

    Article  PubMed  Google Scholar 

  11. Shin JE, Kim HJ, Kim KR, Lee SK, Park J, Kim H, Park KK, Chung WY (2015) Type I saikosaponins a and d inhibit osteoclastogenesis in bone marrow-derived macrophages and osteolytic activity of metastatic breast cancer cells. Evid Based Complement Alternat Med 2015:582437

    PubMed  PubMed Central  Google Scholar 

  12. Ye M, Bi YF, Ding L, Zhu WW, Gao W (2016) Saikosaponin a functions as anti-epileptic effect in pentylenetetrazol induced rats through inhibiting mTOR signaling pathway. Biomed Pharmacother 81:281–287

    Article  CAS  PubMed  Google Scholar 

  13. Chen E, Chen J, Cao SL, Zhang QZ, Jiang XG (2010) Preparation of nasal temperature-sensitive in situ gel of Radix Bupleuri and evaluation of the febrile response mechanism. Drug Dev Ind Pharm 36:490–496

    Article  CAS  PubMed  Google Scholar 

  14. Bermejo P, Abad MJ, Diaz AM, Fernandez L, De Santos J, Sanchez S, Villaescusa L, Carrasco L, Irurzun A (2002) Antiviral activity of seven iridoids, three saikosaponins and one phenylpropanoid glycoside extracted from Bupleurum rigidum and Scrophularia scorodonia. Planta Med 68:106–110

    Article  CAS  PubMed  Google Scholar 

  15. Sun Y, Cai TT, Zhou XB, Xu Q (2009) Saikosaponin a inhibits the proliferation and activation of T cells through cell cycle arrest and induction of apoptosis. Int Immunopharmacol 9:978–983

    Article  CAS  PubMed  Google Scholar 

  16. Ma Y, Bao Y, Wang S, Li T, Chang X, Yang G, Meng X (2016) Anti-inflammation effects and potential mechanism of saikosaponins by regulating nicotinate and nicotinamide metabolism and arachidonic acid metabolism. Inflammation 39:1453–1461

    Article  CAS  PubMed  Google Scholar 

  17. Fu Y, Hu X, Cao Y, Zhang Z, Zhang N (2015) Saikosaponin a inhibits lipopolysaccharide-oxidative stress and inflammation in Human umbilical vein endothelial cells via preventing TLR4 translocation into lipid rafts. Free Radic Biol Med 89:777–785

    Article  CAS  PubMed  Google Scholar 

  18. Yu YH, Xie W, Bao Y, Li HM, Hu SJ, Xing JL (2012) Saikosaponin a mediates the anticonvulsant properties in the HNC models of AE and SE by inhibiting NMDA receptor current and persistent sodium current. PLoS One 7:e50694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu YQ, Hong ZL, Zhan LB, Chu HY, Zhang XZ, Li GH (2016) Wedelolactone enhances osteoblastogenesis by regulating Wnt/beta-catenin signaling pathway but suppresses osteoclastogenesis by NF-kappaB/c-fos/NFATc1 pathway. Sci Rep 6:32260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Du L, Nong MN, Zhao JM, Peng XM, Zong SH, Zeng GF (2016) Polygonatum sibiricum polysaccharide inhibits osteoporosis by promoting osteoblast formation and blocking osteoclastogenesis through Wnt/β-catenin signalling pathway. Sci Rep 6:32261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Su X, Liao L, Shuai Y, Jing H, Liu S, Zhou H, Liu Y, Jin Y (2015) MiR-26a functions oppositely in osteogenic differentiation of BMSCs and ADSCs depending on distinct activation and roles of Wnt and BMP signaling pathway. Cell Death Dis 6:e1851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jackson WM, Nesti LJ, Tuan RS (2012) Concise review: clinical translation of wound healing therapies based on mesenchymal stem cells. Stem Cells Transl Med 1:44–50

    Article  CAS  PubMed  Google Scholar 

  23. Chamberlain G, Fox J, Ashton B, Middleton J (2007) Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 25:2739–2749

    Article  CAS  PubMed  Google Scholar 

  24. Ma ZP, Liao JC, Zhao C, Cai DZ (2015) Effects of the 1, 4-dihydropyridine L-type calcium channel blocker benidipine on bone marrow stromal cells. Cell Tissue Res 361:467–476

    Article  CAS  PubMed  Google Scholar 

  25. Yao W, Guan M, Jia J, Dai W, Lay YA, Amugongo S, Liu R, Olivos D, Saunders M, Lam KS, Nolta J, Olvera D, Ritchie RO, Lane NE (2013) Reversing bone loss by directing mesenchymal stem cells to bone. Stem Cells 31:2003–2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Guan M, Yao W, Liu R, Lam KS, Nolta J, Jia J, Panganiban B, Meng L, Zhou P, Shahnazari M, Ritchie RO, Lane NE (2012) Directing mesenchymal stem cells to bone to augment bone formation and increase bone mass. Nat Med 18:456–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jiang J, Li J, Jia X (2014) The antiosteoporotic activity of central-icaritin (CIT) on bone metabolism of ovariectomized rats. Molecules 19:18690–18704

    Article  PubMed  Google Scholar 

  28. Sun W, Wang YQ, Yan Q, Lu R, Shi B (2014) Effects of Er-Zhi-Wan on microarchitecture and regulation of Wnt/beta-catenin signaling pathway in alveolar bone of ovariectomized rats. J Huazhong Univ Sci Technolog Med Sci 34:114–119

    Article  PubMed  Google Scholar 

  29. He G, Guo W, Lou Z, Zhang H (2014) Achyranthes bidentata saponins promote osteogenic differentiation of bone marrow stromal cells through the ERK MAPK signaling pathway. Cell Biochem Biophys 70:467–473

    Article  CAS  PubMed  Google Scholar 

  30. Wang Y, Huang X, Tang Y, Lin H, Zhou N (2016) Effects of panax notoginseng saponins on the osteogenic differentiation of rabbit bone mesenchymal stem cells through TGF-β1 signaling pathway. BMC Complement Altern Med 16:319

    Article  PubMed  PubMed Central  Google Scholar 

  31. Schilling T, Ebert R, Raaijmakers N, Schutze N, Jakob F (2014) Effects of phytoestrogens and other plant-derived compounds on mesenchymal stem cells, bone maintenance and regeneration. J Steroid Biochem Mol Biol 139:252–261

    Article  CAS  PubMed  Google Scholar 

  32. Siddiqi MH, Siddiqi MZ, Ahn S, Kim YJ, Yang DC (2014) Ginsenoside Rh1 induces mouse osteoblast growth and differentiation through the bone morphogenetic protein 2/runt-related gene 2 signalling pathway. J Pharm Pharmacol 66:1763–1773

    Article  CAS  PubMed  Google Scholar 

  33. Niu Y, Li Y, Huang H, Kong X, Zhang R, Liu L, Sun Y, Wang T, Mei Q (2011) Asperosaponin VI, a saponin component from Dipsacus asper wall, induces osteoblast differentiation through bone morphogenetic protein-2/p38 and extracellular signal-regulated kinase 1/2 pathway. Phytother Res 25:1700–1706

    Article  CAS  PubMed  Google Scholar 

  34. Huang Q, Gao B, Wang L, Zhang HY, Li XJ, Shi J, Wang Z, Zhang JK, Yang L, Luo ZJ, Liu J (2015) Ophiopogonin D: a new herbal agent against osteoporosis. Bone 74:18–28

    Article  CAS  PubMed  Google Scholar 

  35. Wang L, Zhang YG, Wang XM, Ma LF, Zhang YM (2015) Naringin protects human adipose-derived mesenchymal stem cells against hydrogen peroxide-induced inhibition of osteogenic differentiation. Chem Biol Interact 242:255–261

    Article  CAS  PubMed  Google Scholar 

  36. Serigano K, Sakai D, Hiyama A, Tamura F, Tanaka M, Mochida J (2010) Effect of cell number on mesenchymal stem cell transplantation in a canine disc degeneration model. J Orthop Res 28:1267–1275

    Article  PubMed  Google Scholar 

  37. Ying X, Chen X, Feng Y, Xu HZ, Chen H, Yu K, Cheng S, Peng L (2014) Myricetin enhances osteogenic differentiation through the activation of canonical Wnt/β-catenin signaling in human bone marrow stromal cells. Eur J Pharmacol 738:22–30

    Article  CAS  PubMed  Google Scholar 

  38. Tao K, Xiao D, Weng J, Xiong A, Kang B, Zeng H (2016) Berberine promotes bone marrow-derived mesenchymal stem cells osteogenic differentiation via canonical Wnt/β-catenin signaling pathway. Toxicol Lett 240:68–80

    Article  CAS  PubMed  Google Scholar 

  39. Xiao JJ, Zhao WJ, Zhang XT, Zhao WL, Wang XX, Yin SH, Jiang F, Zhao YX, Chen FN, Li SL (2015) Bergapten promotes bone marrow stromal cell differentiation into osteoblasts in vitro and in vivo. Mol Cell Biochem 409:113–122

    Article  CAS  PubMed  Google Scholar 

  40. Marie PJ, Kassem M (2011) Osteoblasts in osteoporosis: past, emerging, and future anabolic targets. Eur J Endocrinol 165:1–10

    Article  CAS  PubMed  Google Scholar 

  41. Ai M, Holmen SL, Van Hul W, Williams BO, Warman ML (2005) Reduced affinity to and inhibition by DKK1 form a common mechanism by which high bone mass-associated missense mutations in LRP5 affect canonical Wnt signaling. Mol Cell Biol 25:4946–4955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Cong Luo (Southern Medical University, PR China) for excellent technical support with micro-CT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shicai Fan.

Ethics declarations

Conflict of interest

Weiqi Huang, Xiaoling Zheng, Xiaodong Yang, and Shicai Fan state that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This study was ethically approved by the Institutional Animal Care and Use Committee of Southern Medical University and performed in accordance with the criteria defined by the rules of the committee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, W., Zheng, X., Yang, X. et al. Stimulation of Osteogenic Differentiation by Saikosaponin-A in Bone Marrow Stromal Cells Via WNT/β-Catenin Pathway. Calcif Tissue Int 100, 392–401 (2017). https://doi.org/10.1007/s00223-017-0242-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-017-0242-y

Keywords

Navigation