Skip to main content

Advertisement

Log in

Tumor Necrosis Factor Alpha Overexpression Induces Mainly Osteoclastogenesis at the Vertebral Site

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Syndesmophyte occurrence and axial bone loss were investigated in the heterozygous Tg187 tumor necrosis factor (TNF) transgenic mouse model (Tg-huTNF) of arthritis. Female and male Tg-huTNF mice were compared to wild-type mice (WT) at 2, 4, 6, 8, and 10 weeks. Syndesmophytes, intervertebral disc space, osteoclasts, osteoid surface, and vertebra microarchitecture were assessed by histomorphometry and microcomputed tomography. No spontaneous syndesmophyte formation was detected in Tg-huTNF compared to WT mice. However, increased porosity was observed mainly in peridiscal lumbar vertebra. Accordingly, bone microarchitecture parameters were altered in Tg-huTNF mice, with decrease in bone volume fraction, and trabecular number and thickness after 6 weeks compared to WT (p < 0.05). Osteoclast count and surface were increased (p < 0.01). Moreover, the non-mineralized (osteoid) surface was also increased in Tg-huTNF after 6 weeks (p < 0.01). Despite increased osteoclast and osteoid surfaces, an imbalance between both was observed in favour of osteoid surface at the early phase and then to osteoclast surface. These results demonstrated an axial bone loss in the Tg-huTNF model, additional to the common limb arthritis, related to overexpression of TNF. However, the absence of syndesmophyte and the increase of osteoid surface suggested that chronic inflammation might block bone mineralisation. Finally, the relative increased osteoid surface was not enough to compensate the high osteoclast activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wajant H, Pfizenmaier K, Scheurich P (2003) Tumor necrosis factor signaling. Cell Death Differ 10:45–65. doi:10.1038/sj.cdd.4401189

    Article  CAS  PubMed  Google Scholar 

  2. Bradley JR (2008) TNF-mediated inflammatory disease. J Pathol 214:149–160. doi:10.1002/path.2287

    Article  CAS  PubMed  Google Scholar 

  3. Chan FK, Chun HJ, Zheng L et al (2000) A domain in TNF receptors that mediates ligand-independent receptor assembly and signaling. Science 288:2351–2354

    Article  CAS  PubMed  Google Scholar 

  4. Rios Rodriguez V, Poddubnyy D (2016) Etanercept for the treatment of non-radiographic axial spondyloarthritis. Expert Rev Clin Immunol 12:493–500. doi:10.1586/1744666X.2016.1144472

    Article  CAS  PubMed  Google Scholar 

  5. Corbett M, Soares M, Jhuti G, et al (2016) Tumour necrosis factor-α inhibitors for ankylosing spondylitis and non-radiographic axial spondyloarthritis: a systematic review and economic evaluation. Health Technol Assess Winch Engl 20:1–334(v–vi). doi:10.3310/hta20090

  6. Toussirot E, Vauchy C, Binda D, Michel F (2016) Golimumab in radiographic and nonradiographic axial spondyloarthritis: a review of clinical trials. Drug Des Dev Ther 10:2087–2094. doi:10.2147/DDDT.S107587

    Article  Google Scholar 

  7. Nakazawa M, Aratani S, Hatta M et al (2002) TNFalpha induces acetylation of p53 but attenuates its transcriptional activation in rheumatoid synoviocytes. Int J Mol Med 10:269–275

    CAS  PubMed  Google Scholar 

  8. Fujisawa K, Aono H, Hasunuma T et al (1996) Activation of transcription factor NF-kappa B in human synovial cells in response to tumor necrosis factor alpha. Arthritis Rheum 39:197–203

    Article  CAS  PubMed  Google Scholar 

  9. Rudwaleit M, Landewé R, van der Heijde D et al (2009) The development of assessment of spondyloarthritis international society classification criteria for axial spondyloarthritis (part I): classification of paper patients by expert opinion including uncertainty appraisal. Ann Rheum Dis 68:770–776. doi:10.1136/ard.2009.108217

    Article  CAS  PubMed  Google Scholar 

  10. Tan S, Yao J, Flynn JA et al (2015) Quantitative syndesmophyte measurement in ankylosing spondylitis using CT: longitudinal validity and sensitivity to change over 2 years. Ann Rheum Dis 74:437–443. doi:10.1136/annrheumdis-2013-203946

    Article  PubMed  Google Scholar 

  11. Muñoz-Ortego J, Vestergaard P, Rubio JB et al (2014) Ankylosing spondylitis is associated with an increased risk of vertebral and nonvertebral clinical fractures: a population-based cohort study. J Bone Miner Res 29:1770–1776. doi:10.1002/jbmr.2217

    Article  PubMed  Google Scholar 

  12. Tan S, Yao J, Flynn JA et al (2015) Dynamics of syndesmophyte growth in AS as measured by quantitative CT: heterogeneity within and among vertebral disc spaces. Rheumatol Oxf Engl 54:972–980. doi:10.1093/rheumatology/keu423

    Article  Google Scholar 

  13. Keffer J, Probert L, Cazlaris H et al (1991) Transgenic mice expressing human tumour necrosis factor: a predictive genetic model of arthritis. EMBO J 10:4025–4031

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Kollias G, Papadaki P, Apparailly F et al (2011) Animal models for arthritis: innovative tools for prevention and treatment. Ann Rheum Dis 70:1357–1362. doi:10.1136/ard.2010.148551

    Article  PubMed  Google Scholar 

  15. Li P, Schwarz EM (2003) The TNF-alpha transgenic mouse model of inflammatory arthritis. Springer Semin Immunopathol 25:19–33. doi:10.1007/s00281-003-0125-3

    Article  PubMed  Google Scholar 

  16. Kollias G (2005) TNF pathophysiology in murine models of chronic inflammation and autoimmunity. Semin Arthritis Rheum 34:3–6. doi:10.1016/j.semarthrit.2005.01.002

    Article  CAS  PubMed  Google Scholar 

  17. Redlich K, Görtz B, Hayer S et al (2004) Overexpression of tumor necrosis factor causes bilateral sacroiliitis. Arthritis Rheum 50:1001–1005. doi:10.1002/art.20194

    Article  CAS  PubMed  Google Scholar 

  18. Garnero P, Jouvenne P, Buchs N et al (1999) Uncoupling of bone metabolism in rheumatoid arthritis patients with or without joint destruction: assessment with serum type I collagen breakdown products. Bone 24:381–385

    Article  CAS  PubMed  Google Scholar 

  19. Marotte H, Miossec P (2008) Prevention of bone mineral density loss in patients with rheumatoid arthritis treated with anti-TNFα therapy. Biologics 2:663–669

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Marotte H, Miossec P (2008) Prevention of bone mineral density loss in patients with rheumatoid arthritis treated with anti-TNFalpha therapy. Biol Targets Ther 2:663–669

    CAS  Google Scholar 

  21. Benedetti G, Miossec P (2014) Interleukin 17 contributes to the chronicity of inflammatory diseases such as rheumatoid arthritis. Eur J Immunol 44:339–347. doi:10.1002/eji.201344184

    Article  CAS  PubMed  Google Scholar 

  22. Guerrini MM, Takayanagi H (2014) The immune system, bone and RANKL. Arch Biochem Biophys. doi:10.1016/j.abb.2014.06.003

    PubMed  Google Scholar 

  23. Komatsu N, Takayanagi H (2012) Autoimmune arthritis: the interface between the immune system and joints. Adv Immunol 115:45–71. doi:10.1016/B978-0-12-394299-9.00002-3

    Article  CAS  PubMed  Google Scholar 

  24. Zwerina J, Redlich K, Polzer K et al (2007) TNF-induced structural joint damage is mediated by IL-1. Proc Natl Acad Sci USA 104:11742–11747. doi:10.1073/pnas.0610812104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zwerina K, Koenders M, Hueber A et al (2012) Anti IL-17A therapy inhibits bone loss in TNF-α-mediated murine arthritis by modulation of the T-cell balance. Eur J Immunol 42:413–423. doi:10.1002/eji.201141871

    Article  CAS  PubMed  Google Scholar 

  26. Thorbecke GJ, Shah R, Leu CH et al (1992) Involvement of endogenous tumor necrosis factor alpha and transforming growth factor beta during induction of collagen type II arthritis in mice. Proc Natl Acad Sci USA 89:7375–7379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Piguet PF, Grau GE, Vesin C et al (1992) Evolution of collagen arthritis in mice is arrested by treatment with anti-tumour necrosis factor (TNF) antibody or a recombinant soluble TNF receptor. Immunology 77:510–514

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Williams RO, Feldmann M, Maini RN (1992) Anti-tumor necrosis factor ameliorates joint disease in murine collagen-induced arthritis. Proc Natl Acad Sci USA 89:9784–9788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shealy DJ, Wooley PH, Emmell E et al (2002) Anti-TNF-α antibody allows healing of joint damage in polyarthritic transgenic mice. Arthritis Res 4:R7. doi:10.1186/ar430

    Article  PubMed  PubMed Central  Google Scholar 

  30. Weinblatt ME, Keystone EC, Furst DE et al (2003) Adalimumab, a fully human anti-tumor necrosis factor alpha monoclonal antibody, for the treatment of rheumatoid arthritis in patients taking concomitant methotrexate: the ARMADA trial. Arthritis Rheum 48:35–45. doi:10.1002/art.10697

    Article  CAS  PubMed  Google Scholar 

  31. Arends S, Spoorenberg A, Brouwer E, van der Veer E (2014) Clinical studies on bone-related outcome and the effect of TNF-α blocking therapy in ankylosing spondylitis. Curr Opin Rheumatol 26:259–268. doi:10.1097/BOR.0000000000000053

    Article  CAS  PubMed  Google Scholar 

  32. van der Heijde D, Landewé R, Einstein S et al (2008) Radiographic progression of ankylosing spondylitis after up to two years of treatment with etanercept. Arthritis Rheum 58:1324–1331. doi:10.1002/art.23471

    Article  PubMed  Google Scholar 

  33. van der Heijde D, Landewé R, Baraliakos X et al (2008) Radiographic findings following two years of infliximab therapy in patients with ankylosing spondylitis. Arthritis Rheum 58:3063–3070. doi:10.1002/art.23901

    Article  PubMed  Google Scholar 

  34. van der Heijde D, Salonen D, Weissman BN et al (2009) Assessment of radiographic progression in the spines of patients with ankylosing spondylitis treated with adalimumab for up to 2 years. Arthritis Res Ther 11:R127. doi:10.1186/ar2794

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hayer S, Redlich K, Korb A et al (2007) Tenosynovitis and osteoclast formation as the initial preclinical changes in a murine model of inflammatory arthritis. Arthritis Rheum 56:79–88. doi:10.1002/art.22313

    Article  PubMed  Google Scholar 

  36. Hayer S, Niederreiter B, Nagelreiter I et al (2010) Interleukin 6 is not a crucial regulator in an animal model of tumour necrosis factor-mediated bilateral sacroiliitis. Ann Rheum Dis 69:1403–1406. doi:10.1136/ard.2010.129148

    Article  CAS  PubMed  Google Scholar 

  37. Hayward MD, Jones BK, Saparov A et al (2007) An extensive phenotypic characterization of the hTNFalpha transgenic mice. BMC Physiol 7:13. doi:10.1186/1472-6793-7-13

    Article  PubMed  PubMed Central  Google Scholar 

  38. Baraliakos X, Heldmann F, Callhoff J et al (2014) Which spinal lesions are associated with new bone formation in patients with ankylosing spondylitis treated with anti-TNF agents? A long-term observational study using MRI and conventional radiography. Ann Rheum Dis 73:1819–1825. doi:10.1136/annrheumdis-2013-203425

    Article  CAS  PubMed  Google Scholar 

  39. Machado PM, Baraliakos X, van der Heijde D et al (2016) MRI vertebral corner inflammation followed by fat deposition is the strongest contributor to the development of new bone at the same vertebral corner: a multilevel longitudinal analysis in patients with ankylosing spondylitis. Ann Rheum Dis 75:1486–1493. doi:10.1136/annrheumdis-2015-208011

    Article  PubMed  Google Scholar 

  40. Filloux V, Marotte H, Miossec P (2003) Cerebral calcifications in an elderly lupus patient. Ann Rheum Dis 62:283–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sawae Y, Sahara T, Sasaki T (2003) Osteoclast differentiation at growth plate cartilage-trabecular bone junction in newborn rat femur. J Electron Microsc 52:493–502.

    Article  Google Scholar 

  42. Klingberg E, Lorentzon M, Göthlin J et al (2013) Bone microarchitecture in ankylosing spondylitis and the association with bone mineral density, fractures, and syndesmophytes. Arthritis Res Ther 15:R179. doi:10.1186/ar4368

    Article  PubMed  PubMed Central  Google Scholar 

  43. Schett G, Redlich K, Hayer S et al (2003) Osteoprotegerin protects against generalized bone loss in tumor necrosis factor-transgenic mice. Arthritis Rheum 48:2042–2051. doi:10.1002/art.11150

    Article  CAS  PubMed  Google Scholar 

  44. Redlich K, Görtz B, Hayer S et al (2004) Repair of local bone erosions and reversal of systemic bone loss upon therapy with anti-tumor necrosis factor in combination with osteoprotegerin or parathyroid hormone in tumor necrosis factor-mediated arthritis. Am J Pathol 164:543–555. doi:10.1016/S0002-9440(10)63144-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Diarra D, Stolina M, Polzer K et al (2007) Dickkopf-1 is a master regulator of joint remodeling. Nat Med 13:156–163. doi:10.1038/nm1538

    Article  CAS  PubMed  Google Scholar 

  46. Walsh NC, Reinwald S, Manning CA et al (2009) Osteoblast function is compromised at sites of focal bone erosion in inflammatory arthritis. J Bone Miner Res 24:1572–1585. doi:10.1359/jbmr.090320

    Article  CAS  PubMed  Google Scholar 

  47. Lories RJU, Derese I, de Bari C, Luyten FP (2007) Evidence for uncoupling of inflammation and joint remodeling in a mouse model of spondylarthritis. Arthritis Rheum 56:489–497. doi:10.1002/art.22372

    Article  PubMed  Google Scholar 

  48. Osta B, Lavocat F, Eljaafari A, Miossec P (2014) Effects of interleukin-17A on osteogenic differentiation of isolated human mesenchymal stem cells. Front Immunol 5:425. doi:10.3389/fimmu.2014.00425

    PubMed  PubMed Central  Google Scholar 

  49. Osta B, Benedetti G, Miossec P (2014) Classical and paradoxical effects of TNF-α on bone homeostasis. Front Immunol 5:48. doi:10.3389/fimmu.2014.00048

    PubMed  PubMed Central  Google Scholar 

  50. Shaw AT, Maeda Y, Gravallese EM (2016) IL-17A deficiency promotes periosteal bone formation in a model of inflammatory arthritis. Arthritis Res Ther 18:104. doi:10.1186/s13075-016-0998-x

    Article  PubMed  PubMed Central  Google Scholar 

  51. Ono T, Okamoto K, Nakashima T et al (2016) IL-17-producing γδ T cells enhance bone regeneration. Nat Commun 7:10928. doi:10.1038/ncomms10928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Papet I, El Yousfi M, Godin JP et al (2008) HLA-B27 rats develop osteopaenia through increased bone resorption without any change in bone formation. J Musculoskelet Neuronal Interact 8:251–256

    CAS  PubMed  Google Scholar 

  53. van Duivenvoorde LM, Dorris ML, Satumtira N et al (2012) Relationship between inflammation, bone destruction, and osteoproliferation in spondyloarthritis in HLA-B27/Huβ2m transgenic rats. Arthritis Rheum 64:3210–3219. doi:10.1002/art.34600

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr Georg Kollias (Fleming Research Center, Greece) for kindly providing Tg-huTNF mice. This work was supported by a grant Passerelle from Pfizer to FC.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hubert Marotte or Fabienne Coury.

Ethics declarations

Conflict of interest

Guillaume Courbon, Sacha Flammier, Norbert Laroche, Laurence Vico, Hubert Marotte, and Fabienne Coury declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

All experimental procedures were approved by our local animal experimentation ethics committee (CECCAPP; permit number for animal experimentation 69387429 Lyon, France).

Additional information

Hubert Marotte and Fabienne Coury have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Courbon, G., Flammier, S., Laroche, N. et al. Tumor Necrosis Factor Alpha Overexpression Induces Mainly Osteoclastogenesis at the Vertebral Site. Calcif Tissue Int 100, 575–584 (2017). https://doi.org/10.1007/s00223-017-0237-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-017-0237-8

Keywords

Navigation