Skip to main content

Advertisement

Log in

Bone-Derived Factors: A New Gateway to Regulate Glycemia

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Type 2 diabetes mellitus (T2DM) and osteoporosis are two major disorders which prevalence increases with aging and is predicted to worsen in the coming years. Preclinical investigations suggest common mechanisms implicated in the pathogenesis of both disorders. Recent evidence has established that there is a clear link between glucose and bone metabolism. The emergence of bone as an endocrine regulator through FGF23 and osteocalcin has led to the re-evaluation of the role of bone cells and bone-derived factors in the development of metabolic diseases such as T2DM. The development of bone morphogenetic proteins, fibroblast growth factor 23, and osteoprotegerin-deficient mice has allowed to elucidate their role in bone homeostasis, as well as revealed their potential important function in glucose homeostasis. This review proposes emerging perspectives for several bone-derived factors that may regulate glycemia through the activation or inhibition of bone remodeling or directly by regulating function of key organs such as pancreatic beta cell proliferation, insulin expression and secretion, storage and release of glucose from the liver, skeletal muscle contraction, and browning of the adipose tissue. Connections between organs including bone-derived factors should further be explored to understand the pathophysiology of glucose metabolism and diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Karsenty G, Ferron M (2012) The contribution of bone to whole-organism physiology. Nature 481(7381):314–320

    Article  CAS  PubMed  Google Scholar 

  2. Ferrari S (2013) Diabetes and osteoporosis. Rev Med Suisse 9(390):1258–1259

    Google Scholar 

  3. Gullberg B, Johnell O, Kanis JA (1997) Worldwide projections for hip fracture. Osteoporos Int 7:407–413

    Article  CAS  PubMed  Google Scholar 

  4. Hita-Contreras F, Martínez-Amat A, Cruz-Díaz D, Pérez-López FR (2015) Osteosarcopenic obesity and fall prevention strategies. Maturitas 80(2):126–132

    Article  PubMed  Google Scholar 

  5. Ducy P, Amling M, Takeda S, Priemel M, Schilling AF, Beil FT et al (2000) Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell 100(2):197–207

    Article  CAS  PubMed  Google Scholar 

  6. Yadav VK, Oury F, Suda N, Liu ZW, Gao XB, Confavreux C et al (2009) A serotonin-dependent mechanism explains the leptin regulation of bone mass, appetite, and energy expenditure. Cell 138(5):976–989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tanaka K, Yamaguchi T, Kanazawa I, Sugimoto T (2015) Effects of high glucose and advanced glycation end products on the expressions of sclerostin and RANKL as well as apoptosis in osteocyte-like MLO-Y4-A2 cells. Biochem Biophys Res Commun 461(2):193–199

    Article  CAS  PubMed  Google Scholar 

  8. Wongdee K, Charoenphandhu N (2011) Osteoporosis in diabetes mellitus: possible cellular and molecular mechanisms. World J Diabetes 2(3):41–48

    Article  PubMed  PubMed Central  Google Scholar 

  9. Furst JR, Bandeira LC, Fan WW, Agarwal S, Nishiyama KK, McMahon DJ et al (2016) Advanced glycation endproducts and bone material strength in type 2 diabetes. J Clin Endocrinol Metab 101(6):2502–2510

    Article  CAS  PubMed  Google Scholar 

  10. Fulzele K, Riddle RC, DiGirolamo DJ, Cao X, Wan C, Chen D et al (2010) Insulin receptor signaling in osteoblasts regulates postnatal bone acquisition and body composition. Cell 142(2):309–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ferron M, McKee MD, Levine RL, Ducy P, Karsenty G (2012) Intermittent injections of osteocalcin improve glucose metabolism and prevent type 2 diabetes in mice. Bone 50(2):568–575

    Article  CAS  PubMed  Google Scholar 

  12. Wei J, Ferron M, Clarke CJ, Hannun YA, Jiang H, Blaner WS et al (2014) Bone-specific insulin resistance disrupts whole-body glucose homeostasis via decreased osteocalcin activation. J Clin Invest 124(4):1–13

    Article  PubMed  Google Scholar 

  13. Ducy P, Schinke T, Karsenty G (2000) The osteoblast: a sophisticated fibroblast under central surveillance. Science 289(5484):1501–1504

    Article  CAS  PubMed  Google Scholar 

  14. Wei J, Shimazu J, Makinistoglu MP, Maurizi A, Kajimura D, Zong H et al (2015) Glucose uptake and Runx2 synergize to orchestrate osteoblast differentiation and bone formation. Cell 161(7):1576–1591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pritchard JJ (1972) General histology of bone. In: Bourne GH (ed) The biochemistry and physiology of bone structure, vol 1, 2nd edn. Academic press, New York, pp 1–20

  16. Esen E, Long F (2014) Aerobic glycolysis in osteoblasts. Curr Osteoporos Rep 12(4):433–438

    Article  PubMed  PubMed Central  Google Scholar 

  17. Weisbrode SE, Capen CC, Nagode LA (1974) Effects of parathyroid hormone on bone of thyroparathyroidectomized rats, an ultrastructural and enzymatic study. Am J Pathol 75(3):529–542

    CAS  PubMed  PubMed Central  Google Scholar 

  18. D’Amelio P, Sassi F, Buondonno I, Spertino E, Tamone C, Piano S et al (2015) Effect of intermittent PTH treatment on plasma glucose in osteoporosis: a randomized trial. Bone 76:177–184

    Article  PubMed  Google Scholar 

  19. Esen E, Lee SY, Wice BM, Long F (2015) PTH promotes bone anabolism by stimulating aerobic glycolysis via IGF signaling. J Bone Miner Res 30:2137

    Article  PubMed  Google Scholar 

  20. Izawa T, Rohatgi N, Fukunaga T, Wang QT, Silva MJ, Gardner MJ et al (2015) ASXL2 regulates glucose, lipid, and skeletal homeostasis. Cell Rep 11(10):1625–1637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lee NK, Sowa H, Hinoi E, Ferron M, Ahn JD, Confavreux C et al (2007) Endocrine regulation of energy metabolism by the skeleton. Cell 130(3):456–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Otani T, Mizokami A, Hayashi Y, Gao J, Mori Y, Nakamura S et al (2015) Signaling pathway for adiponectin expression in adipocytes by osteocalcin. Cell Signal 27(3):532–544

    Article  CAS  PubMed  Google Scholar 

  23. Oury F, Sumara G, Sumara O, Ferron M, Chang H, Smith CE et al (2011) Endocrine regulation of male fertility by the skeleton. Cell 144(5):796–809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ferron M, Hinoi E, Karsenty G, Ducy P (2008) Osteocalcin differentially regulates beta cell and adipocyte gene expression and affects the development of metabolic diseases in wild-type mice. Proc Natl Acad Sci U S A 105(13):5266–5270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pi M, Wu Y, Quarles LD (2011) GPRC6A mediates responses to osteocalcin in β-cells in vitro and pancreas in vivo. J Bone Miner Res 26(7):1680–1683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wei J, Hanna T, Suda N, Karsenty G, Ducy P (2014) Osteocalcin promotes β-cell proliferation during development and adulthood through Gprc6a. Diabetes 63(3):1021–1031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mizokami A, Yasutake Y, Higashi S, Kawakubo-Yasukochi T, Chishaki S, Takahashi I et al (2014) Oral administration of osteocalcin improves glucose utilization by stimulating glucagon-like peptide-1 secretion. Bone 69:68–79

    Article  CAS  PubMed  Google Scholar 

  28. Levinger I, Lin X, Zhang X, Brennan-Speranza TC, Volpato B, Hayes A et al (2016) The effects of muscle contraction and recombinant osteocalcin on insulin sensitivity ex vivo. Osteoporos Int 27(2):653–663

    Article  CAS  PubMed  Google Scholar 

  29. Tsuka S, Aonuma F, Higashi S, Ohsumi T, Nagano K, Mizokami A et al (2015) Promotion of insulin-induced glucose uptake in C2C12 myotubes by osteocalcin. Biochem Biophys Res Commun 459(3):437–442

    Article  CAS  PubMed  Google Scholar 

  30. Fernández-Real JM, Izquierdo M, Ortega F, Gorostiaga E, Gómez-Ambrosi J, Moreno-Navarrete JM et al (2009) The relationship of serum osteocalcin concentration to insulin secretion, sensitivity, and disposal with hypocaloric diet and resistance training. J Clin Endocrinol Metab 94(1):237–245

    Article  PubMed  Google Scholar 

  31. Shen H, Grimston S, Civitelli R, Thomopoulos S (2015) Deletion of connexin43 in osteoblasts/osteocytes leads to impaired muscle formation in mice. J Bone Miner Res 30(4):596–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kunutsor SK, Apekey TA, Laukkanen JA (2015) Association of serum total osteocalcin with type 2 diabetes and intermediate metabolic phenotypes: systematic review and meta-analysis of observational evidence. Eur J Epidemiol 30(8):599–614

    Article  CAS  PubMed  Google Scholar 

  33. Confavreux CB, Borel O, Lee F, Vaz G, Guyard M, Fadat C et al (2012) Osteoid osteoma is an osteocalcinoma affecting glucose metabolism. Osteoporos Int 23(5):1645–1650

    Article  CAS  PubMed  Google Scholar 

  34. Oury F, Ferron M, Huizhen W, Confavreux C, Xu L, Lacombe J et al (2013) Osteocalcin regulates murine and human fertility through a pancreas-bone-testis axis. J Clin Invest 123(6):2421–2433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Desbois C, Hogue DA, Karsenty G (1994) The mouse osteocalcin gene cluster contains three genes with two separate spatial and temporal patterns of expression. J Biol Chem 269(2):1183–1190

    CAS  PubMed  Google Scholar 

  36. Foresta C, Strapazzon G, De Toni L, Gianesello L, Calcagno A, Pilon C et al (2010) Evidence for osteocalcin production by adipose tissue and its role in human metabolism. J Clin Endocrinol Metab 95(7):3502–3506

    Article  CAS  PubMed  Google Scholar 

  37. Patterson-Buckendahl P, Sowinska A, Yee S, Patel D, Pagkalinawan S, Shahid M et al (2012) Decreased sensory responses in osteocalcin null mutant mice imply neuropeptide function. Cell Mol Neurobiol 32(5):879–889

    Article  CAS  PubMed  Google Scholar 

  38. Yoshikawa Y, Kode A, Xu L, Mosialou I, Silva BC, Ferron M et al (2011) Genetic evidence points to an osteocalcin-independent influence of osteoblasts on energy metabolism. J Bone Miner Res 26(9):2012–2025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lee NJ, Nguyen AD, Enriquez RF, Luzuriaga J, Bensellam M, Laybutt R et al (2015) NPY signalling in early osteoblasts controls glucose homeostasis. Mol Metab 4(3):164–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ahmadian M, Suh JM, Hah N, Liddle C, Atkins AR, Downes M et al (2013) PPARγ signaling and metabolism: the good, the bad and the future. Nat Med 19(5):557–566

    Article  CAS  PubMed  Google Scholar 

  41. Wozney JM (1992) The bone morphogenetic protein family and osteogenesis. Mol Reprod Dev 32:160–167

    Article  CAS  PubMed  Google Scholar 

  42. Wagner DO, Sieber C, Bhushan R, Börgermann JH, Graf D, Knaus P (2010) BMPs: from bone to body morphogenetic proteins. Sci Signal 3:107

    Google Scholar 

  43. Sugimoto H, Yang C, LeBleu VS, Soubasakos MA, Giraldo M, Zeisberg M et al (2007) BMP-7 functions as a novel hormone to facilitate liver regeneration. FASEB J 21(1):256–264

    Article  CAS  PubMed  Google Scholar 

  44. Goulley J, Dahl U, Baeza N, Mishina Y, Edlund H (2007) BMP4-BMPR1A signaling in beta cells is required for and augments glucose-stimulated insulin secretion. Cell Metab 5(3):207–219

    Article  CAS  PubMed  Google Scholar 

  45. Scott GJ, Ray MK, Ward T, McCann K, Peddada S, Jiang FX et al (2009) Abnormal glucose metabolism in heterozygous mutant mice for a type I receptor required for BMP signaling. Genesis 47(6):385–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bruun C, Christensen GL, Jacobsen ML, Kanstrup MB, Jensen PR, Fjordvang H et al (2014) Inhibition of beta cell growth and function by bone morphogenetic proteins. Diabetologia 57(12):2546–2554

    Article  CAS  PubMed  Google Scholar 

  47. Bonner C, Farrelly AM, Concannon CG, Dussmann H, Baquié M, Virard I et al (2011) Bone morphogenetic protein 3 controls insulin gene expression and is down-regulated in INS-1 cells inducibly expressing a hepatocyte nuclear factor 1A-maturity-onset diabetes of the young mutation. J Biol Chem 286(29):25719–25728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chen C, Grzegorzewski KJ, Barash S, Zhao Q, Schneider H, Wang Q et al (2003) An integrated functional genomics screening program reveals a role for BMP-9 in glucose homeostasis. Nat Biotechnol 21(3):294–301

    Article  CAS  PubMed  Google Scholar 

  49. Klein D, Álvarez-Cubela S, Lanzoni G, Vargas N, Prabakar KR, Boulina M et al (2015) BMP-7 induces adult human pancreatic exocrine-to-endocrine conversion. Diabetes 64(12):4123–4134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kang Q, Song WX, Luo Q, Tang N, Luo J, Luo X et al (2009) A comprehensive analysis of the dual roles of BMPs in regulating adipogenic and osteogenic differentiation of mesenchymal progenitor cells. Stem Cells Dev 18(4):545–559

    Article  CAS  PubMed  Google Scholar 

  51. Tseng YH, Kokkotou E, Schulz TJ, Huang TL, Winnay JN, Taniguchi CM et al (2008) New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure. Nature 454(7207):1000–1004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Poher AL, Altirriba J, Veyrat-Durebex C, Rohner-Jeanrenaud F (2015) Brown adipose tissue activity as a target for the treatment of obesity/insulin resistance. Front Physiol. doi:10.3389/fphys.2015.00004

    PubMed  PubMed Central  Google Scholar 

  53. Whittle AJ, Carobbio S, Martins L, Slawik M, Hondares E, Vázquez MJ et al (2012) BMP8B increases brown adipose tissue thermogenesis through both central and peripheral actions. Cell 149(4):871–885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Qian SW, Tang Y, Li X, Liu Y, Zhang YY, Huang HY et al (2013) BMP4-mediated brown fat-like changes in white adipose tissue alter glucose and energy homeostasis. Proc Natl Acad Sci U S A 110(9):E798–E807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Taha MF, Valojerdi MR, Mowla SJ (2006) Effect of bone morphogenetic protein-4 (BMP-4) on adipocyte differentiation from mouse embryonic stem cells. Anat Histol Embryol 35(4):271–278

    Article  CAS  PubMed  Google Scholar 

  56. Xue R, Wan Y, Zhang S, Zhang Q, Ye H, Li Y (2014) Role of bone morphogenetic protein 4 in the differentiation of brown fat-like adipocytes. Am J Physiol Endocrinol Metab 306(4):E363–E372

    Article  CAS  PubMed  Google Scholar 

  57. Rinotas V, Niti A, Dacquin R, Bonnet N, Stolina M, Han CY et al (2014) Novel genetic models of osteoporosis by overexpression of human RANKL in transgenic mice. J Bone Miner Res 29(5):1158–1169

    Article  CAS  PubMed  Google Scholar 

  58. Kiechl S, Wittmann J, Giaccari A, Knoflach M, Willeit P, Bozec A et al (2013) Blockade of receptor activator of nuclear factor-κB (RANKL) signaling improves hepatic insulin resistance and prevents development of diabetes mellitus. Nat Med 19(3):358–363

    Article  CAS  PubMed  Google Scholar 

  59. Dufresne SS, Dumont NA, Bouchard P, Lavergne É, Penninger JM, Frenette J (2015) Osteoprotegerin protects against muscular dystrophy. Am J Pathol 185(4):920–926

    Article  CAS  PubMed  Google Scholar 

  60. Kuroda Y, Maruyama K, Fujii H, Sugawara I, Ko SB, Yasuda H et al (2016) Osteoprotegerin regulates pancreatic β-cell homeostasis upon microbial invasion. PLoS ONE 11(1):e0146544

    Article  PubMed  PubMed Central  Google Scholar 

  61. Napoli N, Vittinghoff E, Pannacciulli N, Crittenden D, Yun J, Wang A et al (2014) Effect of denosumab on fasting glucose concentrations in postmenopausal women with osteoporosis: results from subjects with diabetes or pre-diabetes from the freedom trial. JBMR. Abstract supple 59

  62. Gannagé-Yared MH, Fares F, Semaan M, Khalife S, Jambart S (2006) Circulating osteoprotegerin is correlated with lipid profile, insulin sensitivity, adiponectin and sex steroids in an ageing male population. Clin Endocrinol (Oxf) 64(6):652–658

    Article  Google Scholar 

  63. Gannagé-Yared MH, Yaghi C, Habre B, Khalife S, Noun R, Germanos-Haddad M et al (2008) Osteoprotegerin in relation to body weight, lipid parameters insulin sensitivity, adipocytokines, and C-reactive protein in obese and non-obese young individuals: results from both cross-sectional and interventional study. Eur J Endocrinol 158(3):353–359

    Article  PubMed  Google Scholar 

  64. Lasco A, Morabito N, Basile G, Atteritano M, Gaudio A, Giorgianni GM et al (2015) Denosumab inhibition of RANKL and insulin resistance in postmenopausal women with osteoporosis. Calcif Tissue Int 98(2):123–128

    Article  PubMed  Google Scholar 

  65. Hesse M, Fröhlich LF, Zeitz U, Lanske B, Erben RG (2007) Ablation of vitamin D signaling rescues bone, mineral, and glucose homeostasis in Fgf-23 deficient mice. Matrix Biol 26(2):75–84

    Article  CAS  PubMed  Google Scholar 

  66. Mirza MA, Alsiö J, Hammarstedt A, Erben RG, Michaëlsson K, Tivesten A et al (2011) Circulating fibroblast growth factor-23 is associated with fat mass and dyslipidemia in two independent cohorts of elderly individuals. Arterioscler Thromb Vasc Biol 31(1):219–227

    Article  CAS  PubMed  Google Scholar 

  67. Rowe PS (2012) Regulation of bone-renal mineral and energy metabolism: the PHEX, FGF23, DMP1, MEPE ASARM pathway. Crit Rev Eukaryot Gene Expr 22(1):61–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Martin A, David V, Quarles LD (2012) Regulation and function of the FGF23/klotho endocrine pathways. Physiol Rev 92(1):131–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. García-Martín A, Rozas-Moreno P, Reyes-García R, Morales-Santana S, García-Fontana B, García-Salcedo JA et al (2012) Circulating levels of sclerostin are increased in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab 97(1):234–241

    Article  PubMed  Google Scholar 

  70. Daniele G, Winnier D, Mari A, Bruder J, Fourcaudot M, Pengou Z et al (2015) Sclerostin and insulin resistance in prediabetes: evidence of a cross talk between bone and glucose metabolism. Diabetes Care 38(8):1509–1517

    Article  CAS  PubMed  Google Scholar 

  71. Hampson G, Edwards S, Conroy S, Blake GM, Fogelman I, Frost ML (2013) The relationship between inhibitors of the Wnt signalling pathway (Dickkopf-1(DKK1) and sclerostin), bone mineral density, vascular calcification and arterial stiffness in post-menopausal women. Bone 56(1):42–47

    Article  CAS  PubMed  Google Scholar 

  72. Morales-Santana S, García-Fontana B, García-Martín A, Rozas-Moreno P, García-Salcedo JA, Reyes-García R et al (2013) Atherosclerotic disease in type 2 diabetes is associated with an increase in sclerostin levels. Diabetes Care 36(6):1667–1674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Pelletier S, Confavreux CB, Haesebaert J, Guebre-Egziabher F, Bacchetta J, Carlier MC et al (2015) Serum sclerostin: the missing link in the bone-vessel cross-talk in hemodialysis patients? Osteoporos Int 26(8):2165–2174

    Article  CAS  PubMed  Google Scholar 

  74. Confavreux CB, Casey R, Varennes A, Goudable J, Chapurlat RD, Szulc P (2016) Has sclerostin a true endocrine metabolic action complementary to osteocalcin in older men? Osteoporos Int 27(7):2301–2309

    Article  CAS  PubMed  Google Scholar 

  75. Elghazi L, Gould AP, Weiss AJ, Barker DJ, Callaghan J, Opland D et al (2012) Importance of β-Catenin in glucose and energy homeostasis. Sci Rep 2:693

    Article  PubMed  PubMed Central  Google Scholar 

  76. Wang RN, Green J, Wang Z, Deng Y, Qiao M, Peabody M et al (2014) Bone morphogenetic protein (BMP) signaling in development and human diseases. Genes Dis 1(1):87–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Liu H, Fergusson MM, Wu JJ, Rovira II, Liu J, Gavrilova O et al (2011) Wnt signaling regulates hepatic metabolism. Sci Signal 4(158):ra6. doi:10.1126/scisignal.2001249

    Article  PubMed  PubMed Central  Google Scholar 

  78. Krützfeldt J, Stoffel M (2010) Regulation of wingless-type MMTV integration site family (WNT) signalling in pancreatic islets from wild-type and obese mice. Diabetologia 53(1):123–127

    Article  PubMed  Google Scholar 

  79. Liu Z, Habener JF (2010) Wnt signaling in pancreatic islets. Adv Exp Med Biol 654:391–419

    Article  CAS  PubMed  Google Scholar 

  80. Henley KD, Gooding KA, Economides AN, Gannon M (2012) Inactivation of the dual Bmp/Wnt inhibitor Sostdc1 enhances pancreatic islet function. Am J Physiol Endocrinol Metab 303(6):E752–E761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Bonnet N, Standley KN, Bianchi EN, Stadelmann V, Foti M, Conway SJ et al (2009) The matricellular protein periostin is required for sclerostin inhibition and the anabolic response to mechanical loading and physical activity. J Biol Chem 284(51):35939–35950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bonnet N, Conway SJ, Ferrari SL (2012) Regulation of beta catenin signaling and parathyroid hormone anabolic effects in bone by the matricellular protein periostin. Proc Natl Acad Sci U S A 109(37):15048–15053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bonnet N, Garnero P, Ferrari S (2015) Periostin action in bone. Mol Cell Endocrinol 7207(15):30170–30172

    Google Scholar 

  84. Smid JK, Faulkes S, Rudnicki MA (2015) Periostin induces pancreatic regeneration. Endocrinology 156(3):824–836

    Article  CAS  PubMed  Google Scholar 

  85. Vladimirova V, Waha A, Lückerath K, Pesheva P, Probstmeier R (2008) Runx2 is expressed in human glioma cells and mediates the expression of galectin-3. J Neurosci Res 86(11):2450–2461

    Article  CAS  PubMed  Google Scholar 

  86. Zamani N, Brown CW (2011) Emerging roles for the transforming growth factor-{beta} superfamily in regulating adiposity and energy expenditure. Endocr Rev 32(3):387–403

    Article  CAS  PubMed  Google Scholar 

  87. Perros F, Bonnet S (2015) Bone morphogenetic protein receptor type II and inflammation are bringing old concepts into the new pulmonary arterial hypertension world. Am J Respir Crit Care Med 192(7):777–779

    Article  CAS  PubMed  Google Scholar 

  88. Derwall M, Malhotra R, Lai CS, Beppu Y, Aikawa E, Seehra JS et al (2012) Inhibition of bone morphogenetic protein signaling reduces vascular calcification and atherosclerosis. Arterioscler Thromb Vasc Biol 32(3):613–622

    Article  CAS  PubMed  Google Scholar 

  89. Sartori R, Gregorevic P, Sandri M (2014) TGFβ and BMP signaling in skeletal muscle: potential significance for muscle-related disease. Trends Endocrinol Metab 25(9):464–471

    Article  CAS  PubMed  Google Scholar 

  90. Li RX, Yiu WH, Tang SC (2015) Role of bone morphogenetic protein-7 in renal fibrosis. Front Physiol 6:114

    PubMed  PubMed Central  Google Scholar 

  91. Kayed H, Bekasi S, Keleg S, Michalski CW, Giese T, Friess H et al (2007) BGLAP is expressed in pancreatic cancer cells and increases their growth and invasion. Mol Cancer 6:83

    Article  PubMed  PubMed Central  Google Scholar 

  92. Pan J, Xin L, Wang D, Liao Z, Lin JH, Li BR et al (2016) Risk factors for diabetes mellitus in chronic pancreatitis: a cohort of 2011 patients. Medicine (Baltimore) 95(14):e3251

    Article  Google Scholar 

Download references

Acknowledgements

I thank Dr. Dominique Pierroz for providing constructive feedback throughout the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Bonnet.

Ethics declarations

Funding

This work was not supported by any funding.

Conflict of interest

Nicolas Bonnet declare that he has no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonnet, N. Bone-Derived Factors: A New Gateway to Regulate Glycemia. Calcif Tissue Int 100, 174–183 (2017). https://doi.org/10.1007/s00223-016-0210-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-016-0210-y

Keywords

Navigation