Abstract
Type 2 diabetes mellitus (T2DM) and osteoporosis are two major disorders which prevalence increases with aging and is predicted to worsen in the coming years. Preclinical investigations suggest common mechanisms implicated in the pathogenesis of both disorders. Recent evidence has established that there is a clear link between glucose and bone metabolism. The emergence of bone as an endocrine regulator through FGF23 and osteocalcin has led to the re-evaluation of the role of bone cells and bone-derived factors in the development of metabolic diseases such as T2DM. The development of bone morphogenetic proteins, fibroblast growth factor 23, and osteoprotegerin-deficient mice has allowed to elucidate their role in bone homeostasis, as well as revealed their potential important function in glucose homeostasis. This review proposes emerging perspectives for several bone-derived factors that may regulate glycemia through the activation or inhibition of bone remodeling or directly by regulating function of key organs such as pancreatic beta cell proliferation, insulin expression and secretion, storage and release of glucose from the liver, skeletal muscle contraction, and browning of the adipose tissue. Connections between organs including bone-derived factors should further be explored to understand the pathophysiology of glucose metabolism and diabetes.
Similar content being viewed by others
References
Karsenty G, Ferron M (2012) The contribution of bone to whole-organism physiology. Nature 481(7381):314–320
Ferrari S (2013) Diabetes and osteoporosis. Rev Med Suisse 9(390):1258–1259
Gullberg B, Johnell O, Kanis JA (1997) Worldwide projections for hip fracture. Osteoporos Int 7:407–413
Hita-Contreras F, Martínez-Amat A, Cruz-Díaz D, Pérez-López FR (2015) Osteosarcopenic obesity and fall prevention strategies. Maturitas 80(2):126–132
Ducy P, Amling M, Takeda S, Priemel M, Schilling AF, Beil FT et al (2000) Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell 100(2):197–207
Yadav VK, Oury F, Suda N, Liu ZW, Gao XB, Confavreux C et al (2009) A serotonin-dependent mechanism explains the leptin regulation of bone mass, appetite, and energy expenditure. Cell 138(5):976–989
Tanaka K, Yamaguchi T, Kanazawa I, Sugimoto T (2015) Effects of high glucose and advanced glycation end products on the expressions of sclerostin and RANKL as well as apoptosis in osteocyte-like MLO-Y4-A2 cells. Biochem Biophys Res Commun 461(2):193–199
Wongdee K, Charoenphandhu N (2011) Osteoporosis in diabetes mellitus: possible cellular and molecular mechanisms. World J Diabetes 2(3):41–48
Furst JR, Bandeira LC, Fan WW, Agarwal S, Nishiyama KK, McMahon DJ et al (2016) Advanced glycation endproducts and bone material strength in type 2 diabetes. J Clin Endocrinol Metab 101(6):2502–2510
Fulzele K, Riddle RC, DiGirolamo DJ, Cao X, Wan C, Chen D et al (2010) Insulin receptor signaling in osteoblasts regulates postnatal bone acquisition and body composition. Cell 142(2):309–319
Ferron M, McKee MD, Levine RL, Ducy P, Karsenty G (2012) Intermittent injections of osteocalcin improve glucose metabolism and prevent type 2 diabetes in mice. Bone 50(2):568–575
Wei J, Ferron M, Clarke CJ, Hannun YA, Jiang H, Blaner WS et al (2014) Bone-specific insulin resistance disrupts whole-body glucose homeostasis via decreased osteocalcin activation. J Clin Invest 124(4):1–13
Ducy P, Schinke T, Karsenty G (2000) The osteoblast: a sophisticated fibroblast under central surveillance. Science 289(5484):1501–1504
Wei J, Shimazu J, Makinistoglu MP, Maurizi A, Kajimura D, Zong H et al (2015) Glucose uptake and Runx2 synergize to orchestrate osteoblast differentiation and bone formation. Cell 161(7):1576–1591
Pritchard JJ (1972) General histology of bone. In: Bourne GH (ed) The biochemistry and physiology of bone structure, vol 1, 2nd edn. Academic press, New York, pp 1–20
Esen E, Long F (2014) Aerobic glycolysis in osteoblasts. Curr Osteoporos Rep 12(4):433–438
Weisbrode SE, Capen CC, Nagode LA (1974) Effects of parathyroid hormone on bone of thyroparathyroidectomized rats, an ultrastructural and enzymatic study. Am J Pathol 75(3):529–542
D’Amelio P, Sassi F, Buondonno I, Spertino E, Tamone C, Piano S et al (2015) Effect of intermittent PTH treatment on plasma glucose in osteoporosis: a randomized trial. Bone 76:177–184
Esen E, Lee SY, Wice BM, Long F (2015) PTH promotes bone anabolism by stimulating aerobic glycolysis via IGF signaling. J Bone Miner Res 30:2137
Izawa T, Rohatgi N, Fukunaga T, Wang QT, Silva MJ, Gardner MJ et al (2015) ASXL2 regulates glucose, lipid, and skeletal homeostasis. Cell Rep 11(10):1625–1637
Lee NK, Sowa H, Hinoi E, Ferron M, Ahn JD, Confavreux C et al (2007) Endocrine regulation of energy metabolism by the skeleton. Cell 130(3):456–469
Otani T, Mizokami A, Hayashi Y, Gao J, Mori Y, Nakamura S et al (2015) Signaling pathway for adiponectin expression in adipocytes by osteocalcin. Cell Signal 27(3):532–544
Oury F, Sumara G, Sumara O, Ferron M, Chang H, Smith CE et al (2011) Endocrine regulation of male fertility by the skeleton. Cell 144(5):796–809
Ferron M, Hinoi E, Karsenty G, Ducy P (2008) Osteocalcin differentially regulates beta cell and adipocyte gene expression and affects the development of metabolic diseases in wild-type mice. Proc Natl Acad Sci U S A 105(13):5266–5270
Pi M, Wu Y, Quarles LD (2011) GPRC6A mediates responses to osteocalcin in β-cells in vitro and pancreas in vivo. J Bone Miner Res 26(7):1680–1683
Wei J, Hanna T, Suda N, Karsenty G, Ducy P (2014) Osteocalcin promotes β-cell proliferation during development and adulthood through Gprc6a. Diabetes 63(3):1021–1031
Mizokami A, Yasutake Y, Higashi S, Kawakubo-Yasukochi T, Chishaki S, Takahashi I et al (2014) Oral administration of osteocalcin improves glucose utilization by stimulating glucagon-like peptide-1 secretion. Bone 69:68–79
Levinger I, Lin X, Zhang X, Brennan-Speranza TC, Volpato B, Hayes A et al (2016) The effects of muscle contraction and recombinant osteocalcin on insulin sensitivity ex vivo. Osteoporos Int 27(2):653–663
Tsuka S, Aonuma F, Higashi S, Ohsumi T, Nagano K, Mizokami A et al (2015) Promotion of insulin-induced glucose uptake in C2C12 myotubes by osteocalcin. Biochem Biophys Res Commun 459(3):437–442
Fernández-Real JM, Izquierdo M, Ortega F, Gorostiaga E, Gómez-Ambrosi J, Moreno-Navarrete JM et al (2009) The relationship of serum osteocalcin concentration to insulin secretion, sensitivity, and disposal with hypocaloric diet and resistance training. J Clin Endocrinol Metab 94(1):237–245
Shen H, Grimston S, Civitelli R, Thomopoulos S (2015) Deletion of connexin43 in osteoblasts/osteocytes leads to impaired muscle formation in mice. J Bone Miner Res 30(4):596–605
Kunutsor SK, Apekey TA, Laukkanen JA (2015) Association of serum total osteocalcin with type 2 diabetes and intermediate metabolic phenotypes: systematic review and meta-analysis of observational evidence. Eur J Epidemiol 30(8):599–614
Confavreux CB, Borel O, Lee F, Vaz G, Guyard M, Fadat C et al (2012) Osteoid osteoma is an osteocalcinoma affecting glucose metabolism. Osteoporos Int 23(5):1645–1650
Oury F, Ferron M, Huizhen W, Confavreux C, Xu L, Lacombe J et al (2013) Osteocalcin regulates murine and human fertility through a pancreas-bone-testis axis. J Clin Invest 123(6):2421–2433
Desbois C, Hogue DA, Karsenty G (1994) The mouse osteocalcin gene cluster contains three genes with two separate spatial and temporal patterns of expression. J Biol Chem 269(2):1183–1190
Foresta C, Strapazzon G, De Toni L, Gianesello L, Calcagno A, Pilon C et al (2010) Evidence for osteocalcin production by adipose tissue and its role in human metabolism. J Clin Endocrinol Metab 95(7):3502–3506
Patterson-Buckendahl P, Sowinska A, Yee S, Patel D, Pagkalinawan S, Shahid M et al (2012) Decreased sensory responses in osteocalcin null mutant mice imply neuropeptide function. Cell Mol Neurobiol 32(5):879–889
Yoshikawa Y, Kode A, Xu L, Mosialou I, Silva BC, Ferron M et al (2011) Genetic evidence points to an osteocalcin-independent influence of osteoblasts on energy metabolism. J Bone Miner Res 26(9):2012–2025
Lee NJ, Nguyen AD, Enriquez RF, Luzuriaga J, Bensellam M, Laybutt R et al (2015) NPY signalling in early osteoblasts controls glucose homeostasis. Mol Metab 4(3):164–174
Ahmadian M, Suh JM, Hah N, Liddle C, Atkins AR, Downes M et al (2013) PPARγ signaling and metabolism: the good, the bad and the future. Nat Med 19(5):557–566
Wozney JM (1992) The bone morphogenetic protein family and osteogenesis. Mol Reprod Dev 32:160–167
Wagner DO, Sieber C, Bhushan R, Börgermann JH, Graf D, Knaus P (2010) BMPs: from bone to body morphogenetic proteins. Sci Signal 3:107
Sugimoto H, Yang C, LeBleu VS, Soubasakos MA, Giraldo M, Zeisberg M et al (2007) BMP-7 functions as a novel hormone to facilitate liver regeneration. FASEB J 21(1):256–264
Goulley J, Dahl U, Baeza N, Mishina Y, Edlund H (2007) BMP4-BMPR1A signaling in beta cells is required for and augments glucose-stimulated insulin secretion. Cell Metab 5(3):207–219
Scott GJ, Ray MK, Ward T, McCann K, Peddada S, Jiang FX et al (2009) Abnormal glucose metabolism in heterozygous mutant mice for a type I receptor required for BMP signaling. Genesis 47(6):385–391
Bruun C, Christensen GL, Jacobsen ML, Kanstrup MB, Jensen PR, Fjordvang H et al (2014) Inhibition of beta cell growth and function by bone morphogenetic proteins. Diabetologia 57(12):2546–2554
Bonner C, Farrelly AM, Concannon CG, Dussmann H, Baquié M, Virard I et al (2011) Bone morphogenetic protein 3 controls insulin gene expression and is down-regulated in INS-1 cells inducibly expressing a hepatocyte nuclear factor 1A-maturity-onset diabetes of the young mutation. J Biol Chem 286(29):25719–25728
Chen C, Grzegorzewski KJ, Barash S, Zhao Q, Schneider H, Wang Q et al (2003) An integrated functional genomics screening program reveals a role for BMP-9 in glucose homeostasis. Nat Biotechnol 21(3):294–301
Klein D, Álvarez-Cubela S, Lanzoni G, Vargas N, Prabakar KR, Boulina M et al (2015) BMP-7 induces adult human pancreatic exocrine-to-endocrine conversion. Diabetes 64(12):4123–4134
Kang Q, Song WX, Luo Q, Tang N, Luo J, Luo X et al (2009) A comprehensive analysis of the dual roles of BMPs in regulating adipogenic and osteogenic differentiation of mesenchymal progenitor cells. Stem Cells Dev 18(4):545–559
Tseng YH, Kokkotou E, Schulz TJ, Huang TL, Winnay JN, Taniguchi CM et al (2008) New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure. Nature 454(7207):1000–1004
Poher AL, Altirriba J, Veyrat-Durebex C, Rohner-Jeanrenaud F (2015) Brown adipose tissue activity as a target for the treatment of obesity/insulin resistance. Front Physiol. doi:10.3389/fphys.2015.00004
Whittle AJ, Carobbio S, Martins L, Slawik M, Hondares E, Vázquez MJ et al (2012) BMP8B increases brown adipose tissue thermogenesis through both central and peripheral actions. Cell 149(4):871–885
Qian SW, Tang Y, Li X, Liu Y, Zhang YY, Huang HY et al (2013) BMP4-mediated brown fat-like changes in white adipose tissue alter glucose and energy homeostasis. Proc Natl Acad Sci U S A 110(9):E798–E807
Taha MF, Valojerdi MR, Mowla SJ (2006) Effect of bone morphogenetic protein-4 (BMP-4) on adipocyte differentiation from mouse embryonic stem cells. Anat Histol Embryol 35(4):271–278
Xue R, Wan Y, Zhang S, Zhang Q, Ye H, Li Y (2014) Role of bone morphogenetic protein 4 in the differentiation of brown fat-like adipocytes. Am J Physiol Endocrinol Metab 306(4):E363–E372
Rinotas V, Niti A, Dacquin R, Bonnet N, Stolina M, Han CY et al (2014) Novel genetic models of osteoporosis by overexpression of human RANKL in transgenic mice. J Bone Miner Res 29(5):1158–1169
Kiechl S, Wittmann J, Giaccari A, Knoflach M, Willeit P, Bozec A et al (2013) Blockade of receptor activator of nuclear factor-κB (RANKL) signaling improves hepatic insulin resistance and prevents development of diabetes mellitus. Nat Med 19(3):358–363
Dufresne SS, Dumont NA, Bouchard P, Lavergne É, Penninger JM, Frenette J (2015) Osteoprotegerin protects against muscular dystrophy. Am J Pathol 185(4):920–926
Kuroda Y, Maruyama K, Fujii H, Sugawara I, Ko SB, Yasuda H et al (2016) Osteoprotegerin regulates pancreatic β-cell homeostasis upon microbial invasion. PLoS ONE 11(1):e0146544
Napoli N, Vittinghoff E, Pannacciulli N, Crittenden D, Yun J, Wang A et al (2014) Effect of denosumab on fasting glucose concentrations in postmenopausal women with osteoporosis: results from subjects with diabetes or pre-diabetes from the freedom trial. JBMR. Abstract supple 59
Gannagé-Yared MH, Fares F, Semaan M, Khalife S, Jambart S (2006) Circulating osteoprotegerin is correlated with lipid profile, insulin sensitivity, adiponectin and sex steroids in an ageing male population. Clin Endocrinol (Oxf) 64(6):652–658
Gannagé-Yared MH, Yaghi C, Habre B, Khalife S, Noun R, Germanos-Haddad M et al (2008) Osteoprotegerin in relation to body weight, lipid parameters insulin sensitivity, adipocytokines, and C-reactive protein in obese and non-obese young individuals: results from both cross-sectional and interventional study. Eur J Endocrinol 158(3):353–359
Lasco A, Morabito N, Basile G, Atteritano M, Gaudio A, Giorgianni GM et al (2015) Denosumab inhibition of RANKL and insulin resistance in postmenopausal women with osteoporosis. Calcif Tissue Int 98(2):123–128
Hesse M, Fröhlich LF, Zeitz U, Lanske B, Erben RG (2007) Ablation of vitamin D signaling rescues bone, mineral, and glucose homeostasis in Fgf-23 deficient mice. Matrix Biol 26(2):75–84
Mirza MA, Alsiö J, Hammarstedt A, Erben RG, Michaëlsson K, Tivesten A et al (2011) Circulating fibroblast growth factor-23 is associated with fat mass and dyslipidemia in two independent cohorts of elderly individuals. Arterioscler Thromb Vasc Biol 31(1):219–227
Rowe PS (2012) Regulation of bone-renal mineral and energy metabolism: the PHEX, FGF23, DMP1, MEPE ASARM pathway. Crit Rev Eukaryot Gene Expr 22(1):61–86
Martin A, David V, Quarles LD (2012) Regulation and function of the FGF23/klotho endocrine pathways. Physiol Rev 92(1):131–155
García-Martín A, Rozas-Moreno P, Reyes-García R, Morales-Santana S, García-Fontana B, García-Salcedo JA et al (2012) Circulating levels of sclerostin are increased in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab 97(1):234–241
Daniele G, Winnier D, Mari A, Bruder J, Fourcaudot M, Pengou Z et al (2015) Sclerostin and insulin resistance in prediabetes: evidence of a cross talk between bone and glucose metabolism. Diabetes Care 38(8):1509–1517
Hampson G, Edwards S, Conroy S, Blake GM, Fogelman I, Frost ML (2013) The relationship between inhibitors of the Wnt signalling pathway (Dickkopf-1(DKK1) and sclerostin), bone mineral density, vascular calcification and arterial stiffness in post-menopausal women. Bone 56(1):42–47
Morales-Santana S, García-Fontana B, García-Martín A, Rozas-Moreno P, García-Salcedo JA, Reyes-García R et al (2013) Atherosclerotic disease in type 2 diabetes is associated with an increase in sclerostin levels. Diabetes Care 36(6):1667–1674
Pelletier S, Confavreux CB, Haesebaert J, Guebre-Egziabher F, Bacchetta J, Carlier MC et al (2015) Serum sclerostin: the missing link in the bone-vessel cross-talk in hemodialysis patients? Osteoporos Int 26(8):2165–2174
Confavreux CB, Casey R, Varennes A, Goudable J, Chapurlat RD, Szulc P (2016) Has sclerostin a true endocrine metabolic action complementary to osteocalcin in older men? Osteoporos Int 27(7):2301–2309
Elghazi L, Gould AP, Weiss AJ, Barker DJ, Callaghan J, Opland D et al (2012) Importance of β-Catenin in glucose and energy homeostasis. Sci Rep 2:693
Wang RN, Green J, Wang Z, Deng Y, Qiao M, Peabody M et al (2014) Bone morphogenetic protein (BMP) signaling in development and human diseases. Genes Dis 1(1):87–105
Liu H, Fergusson MM, Wu JJ, Rovira II, Liu J, Gavrilova O et al (2011) Wnt signaling regulates hepatic metabolism. Sci Signal 4(158):ra6. doi:10.1126/scisignal.2001249
Krützfeldt J, Stoffel M (2010) Regulation of wingless-type MMTV integration site family (WNT) signalling in pancreatic islets from wild-type and obese mice. Diabetologia 53(1):123–127
Liu Z, Habener JF (2010) Wnt signaling in pancreatic islets. Adv Exp Med Biol 654:391–419
Henley KD, Gooding KA, Economides AN, Gannon M (2012) Inactivation of the dual Bmp/Wnt inhibitor Sostdc1 enhances pancreatic islet function. Am J Physiol Endocrinol Metab 303(6):E752–E761
Bonnet N, Standley KN, Bianchi EN, Stadelmann V, Foti M, Conway SJ et al (2009) The matricellular protein periostin is required for sclerostin inhibition and the anabolic response to mechanical loading and physical activity. J Biol Chem 284(51):35939–35950
Bonnet N, Conway SJ, Ferrari SL (2012) Regulation of beta catenin signaling and parathyroid hormone anabolic effects in bone by the matricellular protein periostin. Proc Natl Acad Sci U S A 109(37):15048–15053
Bonnet N, Garnero P, Ferrari S (2015) Periostin action in bone. Mol Cell Endocrinol 7207(15):30170–30172
Smid JK, Faulkes S, Rudnicki MA (2015) Periostin induces pancreatic regeneration. Endocrinology 156(3):824–836
Vladimirova V, Waha A, Lückerath K, Pesheva P, Probstmeier R (2008) Runx2 is expressed in human glioma cells and mediates the expression of galectin-3. J Neurosci Res 86(11):2450–2461
Zamani N, Brown CW (2011) Emerging roles for the transforming growth factor-{beta} superfamily in regulating adiposity and energy expenditure. Endocr Rev 32(3):387–403
Perros F, Bonnet S (2015) Bone morphogenetic protein receptor type II and inflammation are bringing old concepts into the new pulmonary arterial hypertension world. Am J Respir Crit Care Med 192(7):777–779
Derwall M, Malhotra R, Lai CS, Beppu Y, Aikawa E, Seehra JS et al (2012) Inhibition of bone morphogenetic protein signaling reduces vascular calcification and atherosclerosis. Arterioscler Thromb Vasc Biol 32(3):613–622
Sartori R, Gregorevic P, Sandri M (2014) TGFβ and BMP signaling in skeletal muscle: potential significance for muscle-related disease. Trends Endocrinol Metab 25(9):464–471
Li RX, Yiu WH, Tang SC (2015) Role of bone morphogenetic protein-7 in renal fibrosis. Front Physiol 6:114
Kayed H, Bekasi S, Keleg S, Michalski CW, Giese T, Friess H et al (2007) BGLAP is expressed in pancreatic cancer cells and increases their growth and invasion. Mol Cancer 6:83
Pan J, Xin L, Wang D, Liao Z, Lin JH, Li BR et al (2016) Risk factors for diabetes mellitus in chronic pancreatitis: a cohort of 2011 patients. Medicine (Baltimore) 95(14):e3251
Acknowledgements
I thank Dr. Dominique Pierroz for providing constructive feedback throughout the manuscript.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Funding
This work was not supported by any funding.
Conflict of interest
Nicolas Bonnet declare that he has no conflict of interest.
Ethical approval
All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.
Rights and permissions
About this article
Cite this article
Bonnet, N. Bone-Derived Factors: A New Gateway to Regulate Glycemia. Calcif Tissue Int 100, 174–183 (2017). https://doi.org/10.1007/s00223-016-0210-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00223-016-0210-y