Skip to main content

Advertisement

Log in

Teriparatide Improves Trabecular Osteoporosis but Simultaneously Promotes Ankylosis of the Spine in the Twy Mouse Model for Diffuse Idiopathic Skeletal Hyperostosis

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Diffuse idiopathic skeletal hyperostosis (DISH) is a common skeletal disorder in the elderly, which can develop into periosteal hyperostosis and paradoxically into immobilization-associated trabecular osteoporosis. The bone anabolic agent, teriparatide (TPD), seems to be a rational treatment for the immobilization-associated osteoporosis. However, it can lead to development of hyperostosis lesions in DISH patients. Here, we demonstrate TPD effectively treats trabecular osteoporosis while simultaneously promoting ankylosis of the spine in DISH model tiptoe-walking Yoshimura (twy) mice, compared with the ICR mice. Eighteen male twy mice were divided into three groups, and ICR mice were used as a normal control. Subcutaneous injections of TPD or phosphate-buffered saline (PBS) were performed according to three dosing regimens; 40 µg/kg once daily (TPD × 1 group), 40 µg/kg three times daily (TPD × 3 group), and PBS (control; Ctl group). Treatment was commenced at the age of 7 weeks and continued for 5 weeks. Micro-computed tomography (µCT) and histological analysis were performed. Longitudinal µCT study revealed that trabecular bone volume in both the vertebral body and distal femur decreased with time in the Ctl group, but increased dramatically in the TPD × 3 group. The twy mice developed ankylosis of the spine, the progression of which was accelerated with TPD therapy. We also confirmed that TPD therapy promoted ossification of spinal ligaments. Histomorphometrical study revealed that TPD treatment increased bone formation at the vertebrae enthesis region and in the trabecular bone. TPD therapy effectively treats trabecular osteoporosis, but potentially promotes ankylosis of the spine in patients with DISH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Forestier J, Rotes-Querol J (1950) Senile ankylosing hyperostosis of the spine. Ann Rheum Dis 9(4):321–330

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Resnick D, Shaul SR, Robins JM (1975) Diffuse idiopathic skeletal hyperostosis (DISH): Forestier’s disease with extraspinal manifestations. Radiology 115(3):513–524. doi:10.1148/15.3.513

    Article  CAS  PubMed  Google Scholar 

  3. Belanger TA, Rowe DE (2001) Diffuse idiopathic skeletal hyperostosis: musculoskeletal manifestations. J Am Acad Orthop Surg 9(4):258–267

    CAS  PubMed  Google Scholar 

  4. Mazieres B (2013) Diffuse idiopathic skeletal hyperostosis (Forestier-Rotes-Querol disease): what’s new? Joint Bone Spine 80(5):466–470. doi:10.1016/j.jbspin.2013.02.011

    Article  PubMed  Google Scholar 

  5. Kiss C, O’Neill TW, Mituszova M, Szilagyi M, Poor G (2002) The prevalence of diffuse idiopathic skeletal hyperostosis in a population-based study in Hungary. Scand J Rheumatol 31(4):226–229

    Article  PubMed  Google Scholar 

  6. Diederichs G, Engelken F, Marshall LM, Peters K, Black DM, Issever AS, Barrett-Connor E, Orwoll E, Hamm B, Link TM, OsteoporoticFractures in Men Research Group (2011) Diffuse idiopathic skeletal hyperostosis (DISH): relation to vertebral fractures and bone density. Osteoporos Int 22(6):1789–1797. doi:10.1007/s00198-010-1409-9

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Hannallah D, White AP, Goldberg G, Albert TJ (2007) Diffuse idiopathic skeletal hyperostosis. Oper Tech Orthop 17(3):174–177. doi:10.1053/j.oto.2007.03.001

    Article  Google Scholar 

  8. Westerveld LA, Verlaan JJ, Oner FC (2009) Spinal fractures in patients with ankylosing spinal disorders: a systematic review of the literature on treatment, neurological status and complications. Eur Spine J 18(2):145–156. doi:10.1007/s00586-008-0764-0

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Neer RM, Arnaud CD, Zanchetta JR, Prince R, Gaich GA, Reginster JY, Hodsman AB, Eriksen EF, Ish-Shalom S, Genant HK, Wang O, Mitlak BH (2001) Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med 344(19):1434–1441. doi:10.1056/NEJM200105103441904

    Article  CAS  PubMed  Google Scholar 

  10. Marcus R, Wang O, Satterwhite J, Mitlak B (2003) The skeletal response to teriparatide is largely independent of age, initial bone mineral density, and prevalent vertebral fractures in postmenopausal women with osteoporosis. J Bone Miner Res 18(1):18–23. doi:10.1359/jbmr.2003.18.1.18

    Article  CAS  PubMed  Google Scholar 

  11. Hosoda Y, Yoshimura Y, Higaki S (1981) A new breed of mouse showing multiple osteochondral lesions–twy mouse. Ryumachi [Rheumatism] 21(Suppl):157–164

    Google Scholar 

  12. Kobayashi Y, Goto S, Tanno T, Yamazaki M, Moriya H (1998) Regional variations in the progression of bone loss in two different mouse osteopenia models. Calcif Tissue Int 62(5):426–436

    Article  CAS  PubMed  Google Scholar 

  13. Hirakawa H, Kusumi T, Nitobe T, Ueyama K, Tanaka M, Kudo H, Toh S, Harata S (2004) An immunohistochemical evaluation of extracellular matrix components in the spinal posterior longitudinal ligament and intervertebral disc of the tiptoe walking mouse. J Orthop Sci 9(6):591–597. doi:10.1007/s00776-004-0823-2

    Article  CAS  PubMed  Google Scholar 

  14. Uchida K, Yayama T, Sugita D, Nakajima H, Rodriguez Guerrero A, Watanabe S, Roberts S, Johnson WE, Baba H (2012) Initiation and progression of ossification of the posterior longitudinal ligament of the cervical spine in the hereditary spinal hyperostotic mouse (twy/twy). Eur Spine J 21(1):149–155. doi:10.1007/s00586-011-1971-7

    Article  PubMed Central  PubMed  Google Scholar 

  15. Uchida K, Nakajima H, Watanabe S, Yayama T, Guerrero AR, Inukai T, Hirai T, Sugita D, Johnson WE, Baba H (2012) Apoptosis of neurons and oligodendrocytes in the spinal cord of spinal hyperostotic mouse (twy/twy): possible pathomechanism of human cervical compressive myelopathy. Eur Spine J 21(3):490–497. doi:10.1007/s00586-011-2025-x

    Article  PubMed Central  PubMed  Google Scholar 

  16. Okawa A, Goto S, Moriya H (1999) Calcitonin simultaneously regulates both periosteal hyperostosis and trabecular osteopenia in the spinal hyperostotic mouse (twy/twy) in vivo. Calcif Tissue Int 64(3):239–247

    Article  CAS  PubMed  Google Scholar 

  17. Koshizuka Y, Ikegawa S, Sano M, Nakamura K, Nakamura Y (2001) Isolation of novel mouse genes associated with ectopic ossification by differential display method using ttw, a mouse model for ectopic ossification. Cytogenet Cell Genet 94(3–4):163–168

    Article  CAS  PubMed  Google Scholar 

  18. Furuya S, Ohtsuki T, Yabe Y, Hosoda Y (2000) Ultrastructural study on calcification of cartilage: comparing ICR and twy mice. J Bone Miner Metab 18(3):140–147

    Article  CAS  PubMed  Google Scholar 

  19. Meyer JL (1984) Can biological calcification occur in the presence of pyrophosphate? Arch Biochem Biophys 231(1):1–8

    Article  CAS  PubMed  Google Scholar 

  20. Bouxsein ML, Boyd SK, Christiansen BA, Guldberg RE, Jepsen KJ, Muller R (2010) Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J Bone Miner Res 25(7):1468–1486. doi:10.1002/jbmr.141

    Article  PubMed  Google Scholar 

  21. Mata S, Chhem RK, Fortin PR, Joseph L, Esdaile JM (1998) Comprehensive radiographic evaluation of diffuse idiopathic skeletal hyperostosis: development and interrater reliability of a scoring system. Semin Arthritis Rheum 28(2):88–96

    Article  CAS  PubMed  Google Scholar 

  22. Willinghamm MD, Brodt MD, Lee KL, Stephens AL, Ye J, Silva MJ (2010) Age-related changes in bone structure and strength in female and male BALB/c mice. Calcif Tissue Int 86(6):470–483. doi:10.1007/s00223-010-9359-y

    Article  CAS  PubMed  Google Scholar 

  23. Gaudio A, Pennisi P, Bratengeier C, Torrisi V, Lindner B, Mangiafico RA, Pulvirenti I, Hawa G, Tringali G, Fiore CE (2010) Increased sclerostin serum levels associated with bone formation and resorption markers in patients with immobilization-induced bone loss. J Clin Endocrinol Metab 95(5):2248–2253. doi:10.1210/jc.2010-0067

    Article  CAS  PubMed  Google Scholar 

  24. Frings-Meuthen P, Boehme G, Liphardt AM, Baecker N, Heer M, Rittweger J (2013) Sclerostin and DKK1 levels during 14 and 21 days of bed rest in healthy young men. J Musculoskelet Neuronal Interact 13(1):45–52

    CAS  PubMed  Google Scholar 

  25. Moustafa A, Sugiyama T, Prasad J, Zaman G, Gross TS, Lanyon LE, Price JS (2012) Mechanical loading-related changes in osteocyte sclerostin expression in mice are more closely associated with the subsequent osteogenic response than the peak strains engendered. Osteoporos Int 23(4):1225–1234. doi:10.1007/s00198-011-1656-4

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Lin C, Jiang X, Dai Z, Guo X, Weng T, Wang J, Li Y, Feng G, Gao X, He L (2009) Sclerostin mediates bone response to mechanical unloading through antagonizing Wnt/beta-catenin signaling. J Bone Miner Res 24(10):1651–1661. doi:10.1359/jbmr.090411

    Article  CAS  PubMed  Google Scholar 

  27. Sakai A, Sakata T, Ikeda S, Uchida S, Okazaki R, Norimura T, Hori M, Nakamura T (1999) Intermittent administration of human parathyroid Hormone(1-34) prevents immobilization-related bone loss by regulating bone marrow capacity for bone cells in ddY mice. J Bone Miner Res 14(10):1691–1699. doi:10.1359/jbmr.1999.14.10.1691

    Article  CAS  PubMed  Google Scholar 

  28. Sampson ER, Hilton MJ, Tian Y, Chen D, Schwarz EM, Mooney RA, Bukata SV, O’Keefe RJ, Awad H, Puzas JE, Rosier RN, Zuscik MJ (2011) Teriparatide as a chondroregenerative therapy for injury-induced osteoarthritis. Science Transl Med 3(101):101ra193. doi:10.1126/scitranslmed.3002214

    Article  Google Scholar 

  29. Bellido T, Ali AA, Plotkin LI, Fu Q, Gubrij I, Roberson PK, Weinstein RS, O’Brien CA, Manolagas SC, Jilka RL (2003) Proteasomal degradation of Runx2 shortens parathyroid hormone-induced anti-apoptotic signaling in osteoblasts. A putative explanation for why intermittent administration is needed for bone anabolism. J Biol Chem 278(50):50259–50272. doi:10.1074/jbc.M307444200

    Article  CAS  PubMed  Google Scholar 

  30. Dobnig H, Turner RT (1997) The effects of programmed administration of human parathyroid hormone fragment (1-34) on bone histomorphometry and serum chemistry in rats. Endocrinology 138(11):4607–4612. doi:10.1210/endo.138.11.5505

    CAS  PubMed  Google Scholar 

  31. Rihani-Bisharat S, Maor G, Lewinson D (1998) In vivo anabolic effects of parathyroid hormone (PTH) 28-48 and N-terminal fragments of PTH and PTH-related protein on neonatal mouse bones. Endocrinology 139(3):974–981. doi:10.1210/endo.139.3.5820

    CAS  PubMed  Google Scholar 

  32. Hirai T, Uchida K, Nakajima H, Guerrero AR, Takeura N, Watanabe S, Sugita D, Yoshida A, Johnson WEB, Baba H (2013) The prevalence and phenotype of activated microglia/macrophages within the spinal cord of the hyperostotic mouse (twy/twy) changes in response to chronic progressive spinal cord compression: implications for human cervical compressive myelopathy. PLoS One. doi:10.1371/journal.pone.0064528

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiko Takahata.

Ethics declarations

Conflict of Interest

Hiroki Hamano, Masahiko Takahata, Masahiro Ota, Shigeto Hiratsuka, Tomohiro Shimizu, Yusuke Kameda, and Norimasa Iwasaki declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

The Ethics Review Committee for Animal Experimentation of Hokkaido University approved the experimental protocol.

Electronic supplementary material

Below is the link to the electronic supplementary material.

223_2015_68_MOESM1_ESM.pptx

Histology of ectopic calcification at the posterior atlantoaxial membrane (×200). (a–c) Bright field images of the ectopic calcification with Villanueva staining. There were no cells inside the ectopic calcification but there were fibroblast- or osteoblast-like cells and chondrocyte-like cells around the ectopic calcification. (d–f) Fluorescent field imaging of the ectopic calcification. The ectopic calcification lesions were not labelled with calcein and tetracycline. Black and white dotted lines indicate outer border of ectopic calcification (PPTX 1325 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamano, H., Takahata, M., Ota, M. et al. Teriparatide Improves Trabecular Osteoporosis but Simultaneously Promotes Ankylosis of the Spine in the Twy Mouse Model for Diffuse Idiopathic Skeletal Hyperostosis. Calcif Tissue Int 98, 140–148 (2016). https://doi.org/10.1007/s00223-015-0068-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-015-0068-4

Keywords

Navigation