Advertisement

Calcified Tissue International

, Volume 97, Issue 6, pp 624–633 | Cite as

A Root-Based Combination Supplement Containing Pueraria lobata and Rehmannia glutinosa and Exercise Preserve Bone Mass in Ovariectomized Rats Fed a High-Fat Diet

  • Hyang  Mok Ok
  • Meron Regu Gebreamanuel
  • Sang A. Oh
  • Hyejin Jeon
  • Won Jun Lee
  • Oran KwonEmail author
Original Research

Abstract

The aim of this study was to evaluate the effects of a supplement containing Pueraria lobata/Rehmannia glutinosa (PR) root extracts on bone turnover in ovariectomized (OVX) rats (a model for postmenopausal osteoporosis). Female Sprague–Dawley rats (8 weeks old) were randomized into eight groups: sham-operated rats with low-fat control diet + vehicle, OVX rats with low-fat control diet + vehicle, OVX rats with high-fat diet (HFD) + vehicle, OVX rats with HFD + vehicle + exercise, OVX rats with HFD + PR (400 mg/kg body weight/day p.o.), OVX rats with HFD + PR + exercise, OVX rats with HFD + 17β-estradiol (0.5 mg/kg body weight/day p.o.), OVX rats with HFD + 17β-estradiol + exercise. Bone microarchitecture, bone turnover markers (e.g., plasma alkaline phosphatase and osteocalcin), expressions of osteogenic and resorptive gene markers in the bone were measured. Eight weeks of PR and/or aerobic exercise improved cortical microarchitecture of the femur and decreased markers of bone turnover and expression of skeletal osteoclastogenic genes in the femur. PR supplementation combined with exercise preserved bone loss induced by estrogen deficiency and should be investigated further as an alternative to hormone replacement therapy for preventing osteoporosis in postmenopausal women.

Keywords

Ovariectomy Postmenopausal Osteoporosis Pueraria lobata Rehmanniaglutinosa Exercise 

Notes

Acknowledgments

This work has been supported by the R&D program of MOTIE/KIAT (Establishment of Infra Structure for Anti-aging Industry Support, #N0000697) and the Ministry of Science, ICT and Future Planning through the National Research Foundation (Bio-synergy Research Project NRF2013M3A9C4078153).

Compliance with Ethical Standrads

Conflict of Interest

Hyang M. Ok, Meron R. Gebreamanuel, Sanga Oh, Hyejin Jeon, Won J. Lee, and Oran Kwon declare no conflict of interest.

Human and Animal Rights and Informed Consent

All animal experiments were approved by the Institutional Animal Care and Use Committee (IACUC) of Ewha Womans University, Seoul, Korea. Permit Number: 14-038.

References

  1. 1.
    Deal C (2009) Potential new drug targets for osteoporosis. Nat Clin Pract Rheumatol 5:20–27CrossRefPubMedGoogle Scholar
  2. 2.
    Ray NF, Chan JK, Thamer M, Melton LJ 3rd (1997) Medical expenditures for the treatment of osteoporotic fractures in the United States in 1995: report from the National Osteoporosis Foundation. J Bone Miner Res 12:24–35CrossRefPubMedGoogle Scholar
  3. 3.
    Geusens P, Dinant G (2007) Integrating a gender dimension into osteoporosis and fracture risk research. Gend Med 4(Suppl B):S147–S161CrossRefPubMedGoogle Scholar
  4. 4.
    Kanis JA, Johnell O, Oden A, Jonsson B, De Laet C, Dawson A (2000) Risk of hip fracture according to the World Health Organization criteria for osteopenia and osteoporosis. Bone 27:585–590CrossRefPubMedGoogle Scholar
  5. 5.
    Zhao LJ, Jiang H, Papasian CJ, Maulik D, Drees B, Hamilton J, Deng HW (2008) Correlation of obesity and osteoporosis: effect of fat mass on the determination of osteoporosis. J Bone Miner Res 23:17–29PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Lacey JV Jr, Mink PJ, Lubin JH, Sherman ME, Troisi R, Hartge P, Schatzkin A, Schairer C (2002) Menopausal hormone replacement therapy and risk of ovarian cancer. JAMA 288:334–341CrossRefPubMedGoogle Scholar
  7. 7.
    Beral V, Million Women Study C (2003) Breast cancer and hormone-replacement therapy in the Million Women Study. Lancet 362:419–427CrossRefGoogle Scholar
  8. 8.
    Fitzpatrick LA (1999) Selective estrogen receptor modulators and phytoestrogens: new therapies for the postmenopausal women. Mayo Clin Proc 74:601–607CrossRefPubMedGoogle Scholar
  9. 9.
    Oh KO, Kim SW, Kim JY, Ko SY, Kim HM, Baek JH, Ryoo HM, Kim JK (2003) Effect of Rehmannia glutinosa Libosch extracts on bone metabolism. Clin Chim Acta 334:185–195CrossRefPubMedGoogle Scholar
  10. 10.
    Shiguemoto GE, Rossi EA, Baldissera V, Gouveia CH, de Valdez Vargas GM, de Andrade Perez SE (2007) Isoflavone-supplemented soy yoghurt associated with resistive physical exercise increase bone mineral density of ovariectomized rats. Maturitas 57:261–270CrossRefPubMedGoogle Scholar
  11. 11.
    Wu J, Wang X, Chiba H, Higuchi M, Nakatani T, Ezaki O, Cui H, Yamada K, Ishimi Y (2004) Combined intervention of soy isoflavone and moderate exercise prevents body fat elevation and bone loss in ovariectomized mice. Metab Clin Exp 53:942–948CrossRefPubMedGoogle Scholar
  12. 12.
    Evans EM, Racette SB, Van Pelt RE, Peterson LR, Villareal DT (2007) Effects of soy protein isolate and moderate exercise on bone turnover and bone mineral density in postmenopausal women. Menopause 14:481–488PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Nakajima D, Kim CS, Oh TW, Yang CY, Naka T, Igawa S, Ohta F (2001) Suppressive effects of genistein dosage and resistance exercise on bone loss in ovariectomized rats. J Physiol Anthropol Appl Human Sci 20:285–291CrossRefPubMedGoogle Scholar
  14. 14.
    Trivedi R, Kumar A, Gupta V, Kumar S, Nagar GK, Romero JR, Dwivedi AK, Chattopadhyay N (2009) Effects of Egb 761 on bone mineral density, bone microstructure, and osteoblast function: possible roles of quercetin and kaempferol. Mol Cell Endocrinol 302:86–91CrossRefPubMedGoogle Scholar
  15. 15.
    Delmas PD, Schlemmer A, Gineyts E, Riis B, Christiansen C (1991) Urinary excretion of pyridinoline crosslinks correlates with bone turnover measured on iliac crest biopsy in patients with vertebral osteoporosis. J Bone Miner Res 6:639–644CrossRefPubMedGoogle Scholar
  16. 16.
    Alves-Rodrigues A, Shao A (2004) The science behind lutein. Toxicol Lett 150:57–83CrossRefPubMedGoogle Scholar
  17. 17.
    Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Luthy R, Nguyen HQ, Wooden S, Bennett L, Boone T, Shimamoto G, DeRose M, Elliott R, Colombero A, Tan HL, Trail G, Sullivan J, Davy E, Bucay N, Renshaw-Gegg L, Hughes TM, Hill D, Pattison W, Campbell P, Sander S, Van G, Tarpley J, Derby P, Lee R, Boyle WJ (1997) Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89:309–319CrossRefPubMedGoogle Scholar
  18. 18.
    Kalu DN (1991) The ovariectomized rat model of postmenopausal bone loss. Bone Miner 15:175–191CrossRefPubMedGoogle Scholar
  19. 19.
    Brzezinski A, Debi A (1999) Phytoestrogens: the “natural” selective estrogen receptor modulators? Eur J Obstet Gynecol Reprod Biol 85:47–51CrossRefPubMedGoogle Scholar
  20. 20.
    Sharan K, Siddiqui JA, Swarnkar G, Maurya R, Chattopadhyay N (2009) Role of phytochemicals in the prevention of menopausal bone loss: evidence from in vitro and in vivo, human interventional and pharma-cokinetic studies. Curr Med Chem 16:1138–1157CrossRefPubMedGoogle Scholar
  21. 21.
    Chiechi LM, Lobascio A, Grillo A, Valerio T (1999) Phytoestrogen-containing food and prevention of postmenopausal osteoporosis and cardiovascular diseases. Miner Ginecol 51:343–348Google Scholar
  22. 22.
    Cherdshewasart W, Subtang S, Dahlan W (2007) Major isoflavonoid contents of the phytoestrogen rich-herb Pueraria mirifica in comparison with Pueraria lobata. J Pharm Biomed Anal 43:428–434CrossRefPubMedGoogle Scholar
  23. 23.
    Michihara S, Tanaka T, Uzawa Y, Moriyama T, Kawamura Y (2012) Puerarin exerted anti-osteoporotic action independent of estrogen receptor-mediated pathway. J Nutr Sci Vitaminol 58:202–209CrossRefPubMedGoogle Scholar
  24. 24.
    Mody N, Parhami F, Sarafian TA, Demer LL (2001) Oxidative stress modulates osteoblastic differentiation of vascular and bone cells. Free Radic Biol Med 31:509–519CrossRefPubMedGoogle Scholar
  25. 25.
    Seibel MJ (2005) Biochemical markers of bone turnover: part I: biochemistry and variability. Clin Biochem 26:97–122Google Scholar
  26. 26.
    Devareddy L, Khalil DA, Smith BJ, Lucas EA, Soung do Y, Marlow DD, Arjmandi BH (2006) Soy moderately improves microstructural properties without affecting bone mass in an ovariectomized rat model of osteoporosis. Bone 38:686–693CrossRefPubMedGoogle Scholar
  27. 27.
    Laib A, Beuf O, Issever A, Newitt DC, Majumdar S (2001) Direct measures of trabecular bone architecture from MR images. Adv Exp Med Biol 496:37–46CrossRefPubMedGoogle Scholar
  28. 28.
    Ding M, Odgaard A, Hvid I (2003) Changes in the three-dimensional microstructure of human tibial cancellous bone in early osteoarthritis. J Bone Joint Surg 85:906–912Google Scholar
  29. 29.
    Hahn M, Vogel M, Pompesius-Kempa M, Delling G (1992) Trabecular bone pattern factor—a new parameter for simple quantification of bone microarchitecture. Bone 13:327–330CrossRefPubMedGoogle Scholar
  30. 30.
    Chaffai S, Peyrin F, Nuzzo S, Porcher R, Berger G, Laugier P (2002) Ultrasonic characterization of human cancellous bone using transmission and backscatter measurements: relationships to density and microstructure. Bone 30:229–237CrossRefPubMedGoogle Scholar
  31. 31.
    Boyce BF, Xing LP (2008) Functions of RANKL/RANK/OPG in bone modeling and remodeling. Arch Biochem Biophys 473:139–146PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Kobayashi Y, Udagawa N, Takahashi N (2009) Action of RANKL and OPG for Osteoclastogenesis. Crit Rev Eukar Gene 19:61–72CrossRefGoogle Scholar
  33. 33.
    Teitelbaum SL (2000) Bone resorption by osteoclasts. Science 289:1504–1508CrossRefPubMedGoogle Scholar
  34. 34.
    Udomsuk L, Chatuphonprasert W, Monthakantirat O, Churikhit Y, Jarukamjorn K (2012) Impact of Pueraria candollei var. mirifica and its potent phytoestrogen miroestrol on expression of bone-specific genes in ovariectomized mice. Fitoterapia 83:1687–1692CrossRefPubMedGoogle Scholar
  35. 35.
    Delmas PD, Eastell R, Garnero P, Seibel MJ, Stepan J, Committee of Scientific Advisors of the International Osteoporosis Foundation (2000) The use of biochemical markers of bone turnover in osteoporosis. Osteoporos Int 11(Suppl 6):S2–S17CrossRefPubMedGoogle Scholar
  36. 36.
    Khedgikar V, Gautam J, Kushwaha P, Kumar A, Nagar GK, Dixit P, Chillara R, Voruganti S, Singh SP, Uddin W, Jain GK, Singh D, Maurya R, Chattopadhyay N, Trivedi R (2012) A standardized phytopreparation from an Indian medicinal plant (Dalbergia sissoo) has antiresorptive and bone-forming effects on a postmenopausal osteoporosis model of rat. Menopause 19:1336–1346PubMedGoogle Scholar
  37. 37.
    Liu HY, Liu MC, Wang MF, Chen WH, Tsai CY, Wu KH, Lin CT, Shieh YH, Zeng R, Deng WP (2013) Potential osteoporosis recovery by deep sea water through bone regeneration in SAMP8 mice. Evid Based Complement Altern Med 2013:161976Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Hyang  Mok Ok
    • 1
  • Meron Regu Gebreamanuel
    • 1
  • Sang A. Oh
    • 1
  • Hyejin Jeon
    • 1
  • Won Jun Lee
    • 2
  • Oran Kwon
    • 1
    Email author
  1. 1.Department of Nutritional Science and Food Management, College of Health SciencesEwha Womans UniversitySeoulRepublic of Korea
  2. 2.Department of Exercise Science, College of Health SciencesEwha Womans UniversitySeoulRepublic of Korea

Personalised recommendations