Skip to main content

Advertisement

Log in

The Role of Calcium and Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP) in Human Osteoclast Formation and Resorption

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Osteoclasts are specialised bone resorbing cells which form by fusion of circulating mononuclear phagocyte precursors. Bone resorption results in the release of large amounts of calcium into the extracellular fluid (ECF), but it is not certain whether changes in extracellular calcium concentration [Ca2+]e influence osteoclast formation and resorption. In this study, we sought to determine the effect of [Ca2+]e and NAADP, a potent calcium mobilising messenger that induces calcium uptake, on human osteoclast formation and resorption. CD14+ human monocytes were cultured with M-CSF and RANKL in the presence of different concentrations of calcium and NAADP and the effect on osteoclast formation and resorption evaluated. We found that the number of TRAP+ multinucleated cells and the extent of lacunar resorption were reduced when there was an increase in extracellular calcium and NAADP. This was associated with a decrease in RANK mRNA expression by CD14+ cells. At high concentrations (20 mM) of [Ca2+]e mature osteoclast resorption activity remained unaltered relative to control cultures. Our findings indicate that osteoclast formation is inhibited by a rise in [Ca2+]e and that RANK expression by mononuclear phagocyte osteoclast precursors is also [Ca2+]e dependent. Changes in NAADP also influence osteoclast formation, suggesting a role for this molecule in calcium handling. Osteoclasts remained capable of lacunar resorption, even at high ECF [Ca2+]e, in keeping with their role in physiological and pathological bone resorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Blair HC, Athanasou NA (2004) Recent advances in osteoclast biology and pathological bone resorption. Histol Histopathol 19:189–199

    CAS  PubMed  Google Scholar 

  2. Fujikawa Y, Quinn JM, Sabokbar A et al (1996) The human osteoclast precursor circulates in the monocyte fraction. Endocrinology 137:4058–4060. doi:10.1210/endo.137.9.8756585

    CAS  PubMed  Google Scholar 

  3. Boyle WJ, Simonet WS, Lacey DL (2003) Osteoclast differentiation and activation. Nature 423:337–342. doi:10.1038/nature01658

    Article  CAS  PubMed  Google Scholar 

  4. Salo J, Lehenkari P, Mulari M et al (1997) Removal of osteoclast bone resorption products by transcytosis. Science 276:270–273

    Article  CAS  PubMed  Google Scholar 

  5. Lee HC (2004) Multiplicity of Ca2+ messengers and Ca2+ stores: a perspective from cyclic ADP-ribose and NAADP. Curr Mol Med 4:227–237

    Article  CAS  PubMed  Google Scholar 

  6. Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4:517–529. doi:10.1038/nrm1155

    Article  CAS  PubMed  Google Scholar 

  7. Galione A, Ruas M (2005) NAADP receptors. Cell Calcium 38:273–280. doi:10.1016/j.ceca.2005.06.031

    Article  CAS  PubMed  Google Scholar 

  8. Galione A, Petersen OH (2005) The NAADP receptor: new receptors or new regulation? Mol Interview 5:73–79. doi:10.1124/mi.5.2.4

    Article  CAS  Google Scholar 

  9. Li Z, Kong K, Qi W (2006) Osteoclast and its roles in calcium metabolism and bone development and remodeling. Biochem Biophys Res Commun 343:345–350. doi:10.1016/j.bbrc.2006.02.147

    Article  CAS  PubMed  Google Scholar 

  10. Kaji H, Sugimoto T, Kanatani M, Chihara K (1996) High extracellular calcium stimulates osteoclast-like cell formation and bone-resorbing activity in the presence of osteoblastic cells. J Bone Miner Res 11:912–920. doi:10.1002/jbmr.5650110707

    Article  CAS  PubMed  Google Scholar 

  11. Shin M-M, Kim YH, Kim SN et al (2003) High extracellular Ca2+ alone stimulates osteoclast formation but inhibits in the presence of other osteoclastogenic factors. Exp Mol Med 35:167–174. doi:10.1038/emm.2003.23

    Article  CAS  PubMed  Google Scholar 

  12. Kanatani M, Sugimoto T, Kanzawa M et al (1999) High extracellular calcium inhibits osteoclast-like cell formation by directly acting on the calcium-sensing receptor existing in osteoclast precursor cells. Biochem Biophys Res Commun 261:144–148. doi:10.1006/bbrc.1999.0932

    Article  CAS  PubMed  Google Scholar 

  13. Hemingway F, Cheng X, Knowles HJ et al (2011) In vitro generation of mature human osteoclasts. Calcif Tissue Int 89:389–395. doi:10.1007/s00223-011-9530-0

    Article  CAS  PubMed  Google Scholar 

  14. Hemingway F, Taylor R, Knowles HJ, Athanasou NA (2011) RANKL-independent human osteoclast formation with APRIL, BAFF, NGF, IGF I and IGF II. Bone 48:938–944. doi:10.1016/j.bone.2010.12.023

    Article  CAS  PubMed  Google Scholar 

  15. Rizzoli R, Bonjour J-P (2006) Physiology of calcium and phosphate homeostasis. In: Seibel MJ, Robins SP, Bilezikian JP (eds) Dynamics of bone and cartilage metabolism, 2nd ed. Academic Press, pp 345–360

  16. Hirotani H, Tuohy NA, Woo J-T et al (2004) The calcineurin/nuclear factor of activated T cells signaling pathway regulates osteoclastogenesis in RAW264.7 cells. J Biol Chem 279:13984–13992. doi:10.1074/jbc.M213067200

    Article  CAS  PubMed  Google Scholar 

  17. Negishi-Koga T, Takayanagi H (2009) Ca2+-NFATc1 signaling is an essential axis of osteoclast differentiation. Immunol Rev 231:241–256. doi:10.1111/j.1600-065X.2009.00821.x

    Article  CAS  PubMed  Google Scholar 

  18. Yang Y-M, Kim MS, Son A et al (2009) Alteration of RANKL-induced osteoclastogenesis in primary cultured osteoclasts from SERCA2 ± mice. J Bone Miner Res 24:1763–1769. doi:10.1359/jbmr.090420

    Article  CAS  PubMed  Google Scholar 

  19. Park KH, Park B, Yoon DS et al (2013) Zinc inhibits osteoclast differentiation by suppression of Ca2+-Calcineurin-NFATc1 signaling pathway. Cell Commun Signal 11:74. doi:10.1186/1478-811X-11-74

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Verron E, Loubat A, Carle GF et al (2012) Molecular effects of gallium on osteoclastic differentiation of mouse and human monocytes. Biochem Pharmacol 83:671–679. doi:10.1016/j.bcp.2011.12.015

    Article  CAS  PubMed  Google Scholar 

  21. Zhou Y, Lewis TL, Robinson LJ et al (2011) The role of calcium release activated calcium channels in osteoclast differentiation. J Cell Physiol 226:1082–1089. doi:10.1002/jcp.22423

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Hasegawa H, Kido S, Tomomura M et al (2010) Serum calcium-decreasing factor, caldecrin, inhibits osteoclast differentiation by suppression of NFATc1 activity. J Biol Chem 285:25448–25457. doi:10.1074/jbc.M109.068742

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Blair HC, Robinson LJ, Huang CL-H et al (2011) Calcium and bone disease. Biofactors 37:159–167. doi:10.1002/biof.143

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Sun L, Adebanjo OA, Moonga BS et al (1999) CD38/ADP-ribosyl cyclase: a new role in the regulation of osteoclastic bone resorption. J Cell Biol 146:1161–1172

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Calcraft PJ, Ruas M, Pan Z et al (2009) NAADP mobilizes calcium from acidic organelles through two-pore channels. Nature 459:596–600. doi:10.1038/nature08030

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Notomi T, Ezura Y, Noda M (2012) Identification of two-pore channel 2 as a novel regulator of osteoclastogenesis. J Biol Chem 287(42):35057–35064. doi:10.1074/jbc.M111.328930

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Park K-H, Kim B-J, Shawl AI et al (2013) Autocrine/paracrine function of nicotinic acid adenine dinucleotide phosphate (NAADP) for glucose homeostasis in pancreatic β-cells and adipocytes. J Biol Chem 288:35548–35558. doi:10.1074/jbc.M113.489278

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Research was supported through funding from the EuroBoNet consortium, Oxford NIHR Biomedical Research Unit, the Rosetrees Trust, Sarcoma (UK) and the Bone Cancer Research Trust. The Structural Genomics Consortium is a registered charity (No. 1097737) that receives funds from Abbvie, Bayer Healthcare, Boehringer Ingelheim, the Canadian Institutes for Health Research, the Canadian Foundation for Innovation, Eli Lilly and Company, Genome Canada, GlaxoSmithKline, the Ontario Ministry of Economic Development and Innovation, Janssen, the Novartis Research Foundation, Pfizer, Takeda, and the Wellcome Trust.

Conflict of interest

X. Cheng, E. S. Hookway, T. Kashima, U. Oppermann, A. Galione and N. A. Athanasou declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Athanasou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, X., Hookway, E.S., Kashima, T. et al. The Role of Calcium and Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP) in Human Osteoclast Formation and Resorption. Calcif Tissue Int 96, 73–79 (2015). https://doi.org/10.1007/s00223-014-9939-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-014-9939-3

Keywords

Navigation