Skip to main content

Skeletal Muscle: A Brief Review of Structure and Function

Abstract

Skeletal muscle is one of the most dynamic and plastic tissues of the human body. In humans, skeletal muscle comprises approximately 40 % of total body weight and contains 50–75 % of all body proteins. In general, muscle mass depends on the balance between protein synthesis and degradation and both processes are sensitive to factors such as nutritional status, hormonal balance, physical activity/exercise, and injury or disease, among others. In this review, we discuss the various domains of muscle structure and function including its cytoskeletal architecture, excitation-contraction coupling, energy metabolism, and force and power generation. We will limit the discussion to human skeletal muscle and emphasize recent scientific literature on single muscle fibers.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Wolfe RR (2006) The underappreciated role of muscle in health and disease. Am J Clin Nutr 84:475–482

    CAS  PubMed  Google Scholar 

  2. 2.

    Heymsfield SB, Adamek M, Gonzalez MC, Jia G, Thomas DM (2014) Assessing skeletal muscle mass: historical overview and state of the art. J Cachexia Sarcopenia Muscle 5:9–18

    Article  PubMed Central  PubMed  Google Scholar 

  3. 3.

    Javan R, Horvath JJ, Case LE, Austin S, Corderi J, Dubrovsky A, Kishnani PS, Bashir MR (2013) Generating color-coded anatomic muscle maps for correlation of quantitative magnetic resonance imaging analysis with clinical examination in neuromuscular disorders. Muscle Nerve 48:293–295

    Article  PubMed  Google Scholar 

  4. 4.

    Fortin M, Videman T, Gibbons LE, Battié MC (2014) Paraspinal muscle morphology and composition: a 15-yr longitudinal magnetic resonance imaging study. Med Sci Sports Exerc 46:893–901

    Article  CAS  PubMed  Google Scholar 

  5. 5.

    Hikida RS (2011) Aging changes in satellite cells and their functions. Curr Aging Sci 4:279–297

    Article  PubMed  Google Scholar 

  6. 6.

    Wilkins JT, Krivickas LS, Goldstein R, Suh D, Frontera WR (2001) Contractile properties of adjacent segments of single human muscle fibers. Muscle Nerve 24:1319–1326

    Article  CAS  PubMed  Google Scholar 

  7. 7.

    Macaluso F, Myburgh KH (2012) Current evidence that exercise can increase the number of adult stem cells. J Muscle Res Cell Motil 33:187–198

    Article  CAS  PubMed  Google Scholar 

  8. 8.

    Bareja A, Holt JA, Luo G, Chang C, Lin J, Hinken AC, Freudenberg JM, Kraus WE, Evans WJ, Billin AN (2014) Human and mouse skeletal muscle stem cells: convergent and divergent mechanisms of myogenesis. PLoS ONE 9:e90398

    Article  PubMed Central  PubMed  Google Scholar 

  9. 9.

    Thomas GD (2013) Functional muscle ischemia in Duchenne and Becker muscular dystrophy. Front Physiol 4:1–6

    Article  Google Scholar 

  10. 10.

    Hoppeler H, Lüthi P, Claassen H, Weibel ER, Howald H (1973) The ultrastructure of the normal human skeletal muscle: a morphometric analysis of untrained men, women and well-trained orienteers. Pflügers Arch 344:217–232

    Article  CAS  PubMed  Google Scholar 

  11. 11.

    Gelfi C, Vasso M, Cerretelli P (2011) Diversity of human skeletal muscle in health and disease: contributions of proteomics. J Proteomics 74:774–795

    Article  CAS  PubMed  Google Scholar 

  12. 12.

    Greising SM, Gransee HM, Mantilla CB, Sieck GC (2012) Systems biology of skeletal muscle: fiber type as an organizing principle WIREs. Syst Biol Med 4:457–473

    CAS  Google Scholar 

  13. 13.

    Ottenheijm CAC, Granzier H (2010) Lifting the nebula: novel insights into skeletal muscle contractility. Physiology 25:304–310

    Article  CAS  PubMed  Google Scholar 

  14. 14.

    Monroy JA, Powers KL, Gilomre LA, Uyeno TA, Lindstedt SL, Nishikawa KC (2012) What is the role of titin in active muscle? Exerc Sports Sci Rev 40:73–78

    Article  Google Scholar 

  15. 15.

    Leonard TR, Herzog W (2010) Regulation of muscle force in the absence of actin–myosin-based cross-bridge interaction. Am J Physiol Cell Physiol 299:C14–C20

    Article  CAS  PubMed  Google Scholar 

  16. 16.

    Jayasinghe ID, Launikonis BS (2013) Three-dimensional reconstruction and analysis of the tubular system of vertebrate skeletal muscle. J Cell Sci 126:4048–4058

    Article  CAS  PubMed  Google Scholar 

  17. 17.

    Kerr JP, Ward CW, Bloch RJ (2014) Dysferlin at transverse tubules regulates Ca2+ homeostasis in skeletal muscle. Front Physiol 5. doi:10.3389/fphys.2014.00089

  18. 18.

    Lamboley CR, Murphy RM, McKenna MJ, Lamb GD (2014) Sarcoplasmic reticulum Ca2+ uptake and leak properties, and SERCA isoform expression, in type I and type II fibres of human skeletal muscle. J Physiol 592:1381–1395

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. 19.

    Dahl R, Larsen S, Dohlmann TL, Qvortrup K, Helge JW, Dela F, Prats C (2014) Three dimensional reconstruction of the human skeletal muscle mitochondrial network as a tool to assess mitochondrial content and structural organization. Acta Physiol. doi:10.1111/apha.12289

  20. 20.

    Yan Z, Lira VA, Greene NP (2012) Exercise training-induced regulation of mitochondrial quality. Exerc Sport Sci Rev 40:159–164

    PubMed Central  PubMed  Google Scholar 

  21. 21.

    Weisleder N, Brotto M, Komazaki S, Pan Z, Zhao X, Nosek T, Parness J, Takeshima H, Ma J (2006) Muscle aging is associated with compromised Ca2+ spark signalling and segregated intracellular Ca2+ release. J Cell Biol 174:639–645

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. 22.

    Liu G, Mac Gabhann F, Popel AS (2012) Effects of fiber type and size on the heterogeneity of oxygen distribution in exercising skeletal muscle. PLoS ONE 7(9):e44375. doi:10.1371/journal.pone.0044375

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. 23.

    Schiaffino S, Reggiani C (2011) Fiber types in mammalian skeletal muscles. Physiol Rev 91:1447–1531

    Article  CAS  PubMed  Google Scholar 

  24. 24.

    Galpin AJ, Raue U, Jemiolo B, Trappe TA, Harber MP, Minchev K, Trappe S (2012) Human skeletal muscle fiber type specific protein content. Anal Biochem 425:175–182

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. 25.

    Bergström J (1962) Muscle electrolytes in man. Scand J Clin Lab Invest 14(Suppl):68

    Google Scholar 

  26. 26.

    Larsson L, Moss RL (1993) Maximal velocity of unloaded shortening in relation to myosin heavy and light chain isoform composition in human skeletal muscles. J Physiol Lond 472:595–614

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. 27.

    Andersen JL (2003) Muscle fibre type adaptation in the elderly human muscle. Scand J Med Sci Sports 13:40–47

    Article  PubMed  Google Scholar 

  28. 28.

    Rebbeck RT, Karunasekara Y, Board PG, Beard NA, Casarotto MG, Dulhunty AF (2014) Skeletal muscle excitation–contraction coupling: who are the dancing partners? Int J Biochem Cell Biol 48:28–38

    Article  CAS  PubMed  Google Scholar 

  29. 29.

    Rayment I, Rypniewski WR, Schmidt-Base K, Smith R, Tomchick DR, Benning MM, Winkelmann DA, Wesenberg G, Holden HM (1993) Three-dimesnioanl structure of myosin sub-fragment-1: a molecular motor. Science 261:50–58

    Article  CAS  PubMed  Google Scholar 

  30. 30.

    Manring H, Abreu E, Brotto L, Weisleder N, Brotto M (2014) Novel excitation–contraction coupling related genes reveal aspects of muscle weakness beyond atrophy—new hopes for treatment of musculoskeletal diseases. Front Physiol. doi:10.3389/fphys.2014.00037

    PubMed Central  PubMed  Google Scholar 

  31. 31.

    Weibel ER (2013) The structural conditions for oxygen supply to muscle cells: the Krogh cylinder model. J Exp Biol 216(Pt 22):4135–4137

    Article  PubMed  Google Scholar 

  32. 32.

    Romjin JA, Coyle EF, Sidossi LS, Gastaldelli A, Horowitz JF, Endert E, Wolfe RR (1993) Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. Am J Physiol 265:E380–E391

    Google Scholar 

  33. 33.

    Fulford J, Eston RG, Rowlands AV, Davies RC (2014) Assessment of magnetic resonance techniques to measure muscle damage 24 h after eccentric exercise. Scand J Med Sci Sports. doi:10.1111/sms.12234

  34. 34.

    Huxley H, Niedergerke R (1954) Structural changes in muscle during contraction: interference microscopy of living muscle fibres. Nature 173:971–973

    Article  CAS  PubMed  Google Scholar 

  35. 35.

    Huxley H, Hanson J (1954) Changes in the cross-striations of muscle during contraction and stretch and their structural interpretation. Nature 173:973–976

    Article  CAS  PubMed  Google Scholar 

  36. 36.

    Larsson L, Moss RL (1993) Maximum velocity of shortening in relation to myosin isoform composition in single fibres from human skeletal muscles. J Physiol (Lond) 472:595–614

    Article  CAS  Google Scholar 

  37. 37.

    Frontera WR, Krivickas L, Suh D, Hughes VA, Goldstein R, Roubenoff R (2000) Skeletal muscle fiber quality in older men and women. Am J Physiol 279:C611–C618

    CAS  Google Scholar 

  38. 38.

    Li M, Larsson L (2010) Force-generating capacity of human myosin isoforms extracted from single muscle fibre segments. J Physiol 588:5105–5114

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. 39.

    Lamon S, Wallace MA, Russell AP (2014) The STARS signalling pathway: a key regulator of skeletal muscle function. Pflügers Arch. doi:10.1007/s00424-014-1475-5

  40. 40.

    Seene T, Kaasik P, Alev K (2011) Muscle protein turnover in endurance training: a review. Int J Sports Med 32:905–911

    Article  CAS  PubMed  Google Scholar 

  41. 41.

    Green HJ, Balantyne CS, MacDougall JD, Tarnopolsky MA, Schertzer JD (2003) Adaptations in human sarcoplasmic reticulum to prolonged submaximal training. J Appl Physiol 94:2034–2042

    Article  CAS  PubMed  Google Scholar 

  42. 42.

    Russell AP (2010) Molecular regulation of skeletal muscle mass. Clin Exp Pharmacol Physiol 37:378–384

    Article  CAS  PubMed  Google Scholar 

  43. 43.

    Mayhew DL, Kim JS, Cross JM, Ferrando AA, Bamman MM (2009) Translational signalling responses preceding resistance training-mediated myofiber hypertrophy in young and old humans. J Appl Physiol 107:1655–1662

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. 44.

    Schiaffino S, Dyar KA, Ciciliot S, Blaauw B, Sandri M (2013) Mechanisms regulating skeletal muscle growth and atrophy. FEBS J 280:4294–4314

    Article  CAS  PubMed  Google Scholar 

  45. 45.

    Hitachi K, Tsuchida K (2014) Role of microRNAs in skeletal muscle hypertrophy. Front Physiol 4:1–7. doi:10.3389/fphys.2013.00408

    Article  Google Scholar 

  46. 46.

    Blaauw B, Reggiani C (2014) The role of satellite cells in muscle hypertrophy. J Muscle Res Cell Motil 35:3–10

    Article  CAS  PubMed  Google Scholar 

  47. 47.

    Nader GA, von Walden F, Liu C, Lindvall J, Gutmann L, Pistilli EE, Gordon PM (2014) Resistance exercise training modulates acute gene expression during human skeletal muscle hypertrophy. J Appl Physiol 116:693–702

    Article  CAS  PubMed  Google Scholar 

  48. 48.

    Cermak NM, Res PT, de Groot LC, Saris WH, van Loon LJ (2012) Protein supplementation augments the adaptive response of skeletal muscle to resistance-type exercise training: a meta analysis. Am J Clin Nutr 96:1454–1464

    Article  CAS  PubMed  Google Scholar 

  49. 49.

    Rosenberg IH (1989) Summary comments. Am J Clin Nutr 50:1231–1233

    Google Scholar 

  50. 50.

    Rosenberg IH (1997) Sarcopenia: origins and clinical relevance. J Nutr 127:990S–991S

    CAS  PubMed  Google Scholar 

  51. 51.

    Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, Martin FC, Michel JP, Rolland Y, Schneider SM, Topinkova E, Vandewoude M, Zamboni M (2010) Sarcopenia: European consensus on definition and diagnosis. Age Ageing 39:412–423

    Article  PubMed Central  PubMed  Google Scholar 

  52. 52.

    Frontera WR, Hughes VA, Fielding RA, Fiatarone MA, Evans WJ, Roubenoff R (2000) Aging of skeletal muscle: a 12-yr longitudinal study. J Appl Physiol 88:1321–1326

    CAS  PubMed  Google Scholar 

  53. 53.

    Yamada M, Moriguch Y, Mitani T, Aoyama T, Arai H (2014) Age-dependent changes in skeletal muscle mass and visceral fat area in Japanese adults from 40 to 79 years-of-age. Geriatr Gerontol Int 14(Suppl 1):8–14

    Article  PubMed  Google Scholar 

  54. 54.

    Hughes VA, Frontera WR, Wood M, Evans WJ, Dallal GE, Roubenoff R, Fiatarone M (2001) Longitudinal muscle strength changes in older adults: influence of muscle mass, physical activity and health. J Gerontol (Biol Sci) 56A:B209–B217

    Article  Google Scholar 

  55. 55.

    Reid KF, Pasha E, Doros G, Clark DJ, Patten C, Phillips EM, Widrick J, Frontera WR, Fielding RA (2014) Longitudinal decline of lower extremity muscle power in healthy and mobility-limited older adults: influence of muscle mass, strength, composition, neuromuscular activation and single fiber contractile properties. Eur J Appl Physiol 114:29–39

    Article  PubMed Central  PubMed  Google Scholar 

  56. 56.

    Verdijk LB, Koopman R, Schaart G, Meijer K, Savelberg HH, Dendale P, van Loon LJ (2007) Satellite cell content is specifically reduced in type II skeletal muscle fibers in elderly. Am J Physiol Endocrinol Metab 292:E151–E157

    Article  CAS  PubMed  Google Scholar 

  57. 57.

    McKay BR, Ogborn DI, Baker JM, Toth KG, Tarnopolsky MA, Parise G (2013) Elevated SOCS3 and altered IL-6 signaling is associated with age-related human muscle stem cell dysfunction. Am J Physiol Cell Physiol 304:C717–C728

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. 58.

    Broskey NT, Greggio C, Boss A, Boutant M, Dwyer A, Schleuter L, Hans D, Gremion G, Kreis R, Boesch C, Canto C, Amati F (2014) Skeletal muscle mitochondria in the elderly: effects of physical fitness and exercise training. J Clin Endocrinol Metab. doi:10.1210/jc.2013-3983

    PubMed  Google Scholar 

  59. 59.

    Miller MS, Toth MJ (2013) Myofilament protein alterations promote physical disability in aging and disease. Exerc Sport Sci Rev 41:93–99

    Article  PubMed Central  PubMed  Google Scholar 

  60. 60.

    D’Antona G, Pellegrino MA, Adami R, Rossi R, Carlizzi CN, Canepari M, Saltin B, Bottinelli R (2003) The effect of ageing and immobilization on structure and function of human skeletal muscle fibres. J Physiol 552:499–511

    Article  PubMed Central  PubMed  Google Scholar 

  61. 61.

    Moen RJ, Klein JC, Thomas DD (2014) Electron paramagnetic resonance resolves effects of oxidative stress on muscle proteins. Exerc Sport Sci Rev 42:30–36

    Article  PubMed Central  PubMed  Google Scholar 

  62. 62.

    Frontera WR, Reid KF, Phillips EM, Krivickas L, Hughes VA, Roubenoff R, Fielding RA (2008) Muscle fiber size and function in elderly humans: a longitudinal study. J Appl Physiol 105:637–642

    Article  PubMed Central  PubMed  Google Scholar 

  63. 63.

    Reid KF, Doros G, Clark DJ, Patten C, Carabello RJ, Cloutier GJ, Phillips EM, Krivickas LS, Frontera WR, Fielding RA (2012) Muscle power failure in mobility-limited older adults: preserved single fiber function despite lower whole muscle size, quality and neuromuscular activation. Eur J Appl Physiol 112:2289–2301

    Article  PubMed Central  PubMed  Google Scholar 

  64. 64.

    Ochala J, Frontera WR, Krivickas LS (2007) Single skeletal muscle fiber elastic and contractile characteristics in young and older men. J Gerontol Biol Sci 62A:375–381

    Article  CAS  Google Scholar 

  65. 65.

    Monroy JA, Powers KL, Gilmore LA, Uyeno TA, Lindstedt SL, Nishikawa KC (2012) What is the role of titin in active muscle? Exerc Sport Sci Rev 40:73–78

    Article  PubMed  Google Scholar 

  66. 66.

    Ryu M, Jo J, Lee Y, Chung YS, Kim KM, Baek WC (2013) Association of physical activity with sarcopenia and sarcopenic obesity in community-dwelling older adults: the fourth Korea National health and nutrition examination survey. Age Ageing 42:734–740

    Article  PubMed  Google Scholar 

  67. 67.

    Bergouignan A, Rudwill F, Simon C, Blanc S (2011) Physical inactivity as the culprit of metabolic inflexibility: evidence from bed-rest studies. J Appl Physiol 111:1201–1210

    Article  CAS  PubMed  Google Scholar 

  68. 68.

    Trappe SW, Trappe TA, Lee GA, Widrick JJ, Costill DL, Fitts RH (2001) Comparison of a space shuttle flight (STS-78) and bed rest on human muscle function. J Appl Physiol 91:57–64

    CAS  PubMed  Google Scholar 

  69. 69.

    Alkner BA, Tesch PA (2004) Knee extensor and plantar flexor muscle size and function following 90 days of bed rest with or without resistance exercise. Eur J Appl Physiol 93:294–305

    Article  PubMed  Google Scholar 

  70. 70.

    Rittweger J, Möller K, Bareille MP, Felsenberg D, Zange J (2013) Muscle X-ray attenuation is not decreased during experimental bed rest. Muscle Nerve 47:722–730

    Article  PubMed  Google Scholar 

  71. 71.

    Trappe S, Trappe T, Gallagher P, Harber M, Alkner B, Tesch P (2004) Human single muscle fibre function with 84 day bed-rest and resistance exercise. J Physiol 557:501–513

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. 72.

    Haus JM, Carrithers JA, Carroll CC, Tesch PA, Trappe TA (2007) Contractile and connective tissue protein content of human skeletal muscle: effects of 35 and 90 days of simulated microgravity and exercise countermeasures. Am J Physiol Regul Integr Comp Physiol 293:1722–1727

    Article  Google Scholar 

  73. 73.

    Stevens L, Bastide B, Hedou J, Cieniewski-Bernard C, Montel V, Cochon L, Dupont E, Mounier Y (2013) Potential regulation of human muscle plasticity by MLC2 post-translational modifications during bed rest and countermeasures. Arch Biochem Biophys 540:125–132

    Article  CAS  PubMed  Google Scholar 

  74. 74.

    Collins J, Bonnemann CG (2010) Congenital muscular dystrophies: toward molecular therapeutic interventions. Curr Neurol Neurosci Rep 10:83–91

    Article  CAS  PubMed  Google Scholar 

  75. 75.

    Canepari M, Rossi R, Pansarasa O, Maffei M, Bottinelli R (2009) Actin sliding velocity on pure myosin isoforms from dystrophic mouse muscles. Muscle Nerve 40:249–256

    Article  CAS  PubMed  Google Scholar 

  76. 76.

    D’Antona G, Brocca L, Pansarasa O, Rinaldi R, Tupler R, Bottinelli R (2007) Structural and functional alterations of muscle fibres in the novel mouse model of facioscapulohumeral muscular dystrophy. J Physiol 584:997–1009

    Article  PubMed Central  PubMed  Google Scholar 

  77. 77.

    Krivickas LS, Ansved T, Suh D, Frontera WR (2000) Contractile properties of single muscle fibers in myotonic dystrophy. Muscle Nerve 23:529–537

    Article  CAS  PubMed  Google Scholar 

  78. 78.

    Ochala J (2008) Thin filament proteins mutations associated with skeletal myopathies: defective regulation of muscle contraction. J Mol Med 86:1197–1204

    Article  CAS  PubMed  Google Scholar 

  79. 79.

    Ochala J, Li M, Tajsharghi H, Kimber E, Tulinius M, Oldfors A, Larsson L (2007) Effects of a R133W beta-tropomyosin mutation on regulation of muscle contraction in single human muscle fibres. J Physiol Lond 581:1283–1292

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. 80.

    Ochala J, Iwamoto H, Larsson L, Yagi N (2010) A myopathy-linked tropomyosin mutation severely alters thin filament conformational changes during activation. Proc Natl Acad Sci USA 107:9807–9812

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. 81.

    Allen DL, Monke SR, Talmadge RJ, Roy RR, Edgerton VR (1995) Plasticity of myonuclear number in hypertrophied and atrophied mammalian skeletal muscle fibers. J Appl Physiol 78(5):1969–1976

  82. 82.

    Raven PB, Wasserman DH, Squires WG Jr, Muray TD (2013) Exercise physiology: an integrated approach. Wadsworth Cengage Learning, Belmont, CA

  83. 83.

    Sherwood L (2010) Human physiology. Brooks/Cole-Cengage Learning, Belmont, CA

  84. 84.

    Kenney WL, Wilmore JH, Costill DL (2012) Physiology of sport and exercise. Human Kinetics, Champaign, IL

  85. 85.

    Silverthorn U (2007) Human physiology. Pearson Education Inc

Download references

Conflict of interest

Walter R. Frontera and Julien Ochala declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Walter R. Frontera.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Frontera, W.R., Ochala, J. Skeletal Muscle: A Brief Review of Structure and Function. Calcif Tissue Int 96, 183–195 (2015). https://doi.org/10.1007/s00223-014-9915-y

Download citation

Keywords

  • Muscle actions
  • Metabolism
  • Force generation
  • Exercise
  • Sarcopenia
  • Dystrophy