Calcified Tissue International

, Volume 95, Issue 5, pp 413–418 | Cite as

Studying Variations in Bone Composition at Nano-Scale Resolution: A Preliminary Report

  • Samuel Gourion-Arsiquaud
  • Curtis Marcott
  • Qichi Hu
  • Adele L. Boskey
Original Research


Bone has a hierarchical structure extending from the micrometer to the nanometer scale. We report here the first analysis of non-human primate osteonal bone obtained using a spectrometer coupled to an AFM microscope (AFM-IR), with a resolution of 50–100 nm. Average spectra correspond to those observed with conventional FTIR spectroscopy. The following validated FTIR parameters were calculated based on intensities observed in scans covering ~60 µm from the osteon center: mineral content (1030/1660 cm−1), crystallinity (1030/1020 cm−1), collagen maturity (1660/1690 cm−1), and acid phosphate content (1128/1096 cm−1). A repeating pattern was found in most of these calculated IR parameters corresponding to the reported inter- and intra-lamellar spacing in human bone, indicating that AFM-IR measurements will be able to provide novel compositional information on the variation in bone at the nanometer level.


AFM-IR Nano-IR Bone composition Osteonal bone Bone nano-structure 



Data for this study were collected at Anasys Instruments, Santa Barbara, CA. The study was supported by NIH grant AR041325. The authors are grateful to Dr. Judah Gerstein for editing the manuscript.

Conflict of Interest

Curt Marcott is a scientific advisor for Anasys Instruments; Qichi Hu is an employee of Anasys Instruments; Samuel Gourion-Arsiquaud and Adele Boskey have no conflicts of interest.

Human and Animal Rights and Informed Consent

The animal was from the colony at the Southwest National Primate Research Center/Southwest Foundation for Biomedical Research (SNPRC/SFBR, San Antonio, TX), and all procedures during its life at SNPRC/SFBR were approved by the Institutional Animal Care and Use Committee (IACUC) in accordance with established guidelines. The IACUC of the Hospital for Special Surgery approved the use of these biopsies.


  1. 1.
    Bouxsein ML, Seeman E (2009) Quantifying the material and structural determinants of bone strength. Best Pract Res Clin Rheumatol 23:741–753PubMedCrossRefGoogle Scholar
  2. 2.
    Gourion-Arsiquaud S, Allen MR, Burr DB, Vashishth D, Tang SY, Boskey AL (2010) Bisphosphonate treatment modifies canine bone mineral and matrix properties and their heterogeneity. Bone 46:666–672PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Boskey AL, Spevak L, Weinstein RS (2009) Spectroscopic markers of bone quality in alendronate-treated postmenopausal women. Osteoporos Int 20:793–800PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Donnelly E, Meredith DS, Nguyen JT, Gladnick BP, Rebolledo BJ, Shaffer AD, Lorich DG, Lane JM, Boskey AL (2012) Reduced cortical bone compositional heterogeneity with bisphosphonate treatment in postmenopausal women with intertrochanteric and subtrochanteric fractures. J Bone Miner Res 27:672–678PubMedCrossRefGoogle Scholar
  5. 5.
    Gourion-Arsiquaud S, Lukashova L, Power J, Loveridge N, Reeve J, Boskey AL (2013) Fourier transform infrared imaging of femoral neck bone: reduced heterogeneity of mineral-to-matrix and carbonate-to-phosphate and more variable crystallinity in treatment-naive fracture cases compared with fracture-free controls. J Bone Miner Res 28:150–161PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Bala Y, Farlay D, Chapurlat RD, Boivin G (2011) Modifications of bone material properties in postmenopausal osteoporotic women long-term treated with alendronate. Eur J Endocrinol 165:647–655PubMedCrossRefGoogle Scholar
  7. 7.
    Zoehrer R, Roschger P, Paschalis EP, Hofstaetter JG, Durchschlag E, Fratzl P, Phipps R, Klaushofer K (2006) Effects of 3- and 5-year treatment with risedronate on bone mineralization density distribution in triple biopsies of the iliac crest in postmenopausal women. J Bone Miner Res 21:1106–1112PubMedCrossRefGoogle Scholar
  8. 8.
    Juillard A, Falgayrac G, Cortet B, Vieillard MH, Azaroual N, Hornez JC, Penel G (2010) Molecular interactions between zoledronic acid and bone: an in vitro Raman microspectroscopic study. Bone 47:895–904PubMedCrossRefGoogle Scholar
  9. 9.
    Misof BM, Roschger P, Gabriel D, Paschalis EP, Eriksen EF, Recker RR, Gasser JA, Klaushofer K (2013) Annual intravenous zoledronic acid for 3 years increased cancellous bone matrix mineralization beyond normal values in the HORIZON biopsy cohort. J Bone Miner Res 28:442–448PubMedCrossRefGoogle Scholar
  10. 10.
    McCreadie BR, Morris MD, Chen TC, Sudhaker Rao D, Finney WF, Widjaja E, Goldstein SA (2006) Bone tissue compositional differences in women with and without osteoporotic fracture. Bone 39:1190–1195PubMedCrossRefGoogle Scholar
  11. 11.
    Akkus O, Adar F, Schaffler MB (2004) Age-related changes in physicochemical properties of mineral crystals are related to impaired mechanical function of cortical bone. Bone 34:443–453PubMedCrossRefGoogle Scholar
  12. 12.
    Amarie S, Zaslansky P, Kajihara Y, Griesshaber E, Schmahl WW, Keilmann F (2012) Nano-FTIR chemical mapping of minerals in biological materials. Beilstein J Nanotechnol 3:312–323PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Kjoller K, Felts JR, Cook D, Prater CB, King WP (2010) High-sensitivity nanometer-scale infrared spectroscopy using a contact mode microcantilever with an internal resonator paddle. Nanotechnology. 21:185705PubMedCrossRefGoogle Scholar
  14. 14.
    Felts JR, Cho H, Yu MF, Bergman LA, Vakakis AF, King WP (2013) Atomic force microscope infrared spectroscopy on 15 nm scale polymer nanostructures. Rev Sci Instrum 84:023709PubMedCrossRefGoogle Scholar
  15. 15.
    Dazzi A, Prazeres R, Glotin F, Ortega JM (2005) Local infrared microspectroscopy with subwavelength spatial resolution with an atomic force microscope tip used as a photothermal sensor. Opt Lett 30:2388–2390PubMedCrossRefGoogle Scholar
  16. 16.
    Dazzi A, Prater DB, Hu Q, Chase DB, Rabolt JF, Marcott C (2012) Combining atomic force microscopy and infrared spectroscopy for nanoscale chemical characterization. Appl Spectrosc 66:1365–1384PubMedCrossRefGoogle Scholar
  17. 17.
    Gourion-Arsiquaud S, Burket JC, Havill LM, DiCarlo E, Doty SB, Mendelsohn R, van der Meulen MC, Boskey AL (2009) Spatial variation in osteonal bone properties relative to tissue and animal age. J Bone Miner Res 24:1271–1281PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Erben RG (1997) Embedding of bone samples in methylmethacrylate: an improved method suitable for bone histomorphometry, histochemistry, and immunohistochemistry. J Histochem Cytochem 45:307–313PubMedCrossRefGoogle Scholar
  19. 19.
    Aparicio S, Doty SB, Camacho NP, Paschalis EP, Spevak L, Mendelsohn R, Boskey A (2002) Optimal methods for processing mineralized tissues for Fourier transform infrared microspectroscopy. Calcif Tissue Int 70:422–429PubMedCrossRefGoogle Scholar
  20. 20.
    Spevak L, Flach CR, Hunter T, Mendelsohn R, Boskey A (2013) Fourier transform infrared spectroscopic imaging parameters describing acid phosphate substitution in biologic hydroxyapatite. Calcif Tissue Int 92:418–428PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Giraud-Guille M (1988) Twisted plywood architecture of collagen fibrils in human compact bone osteons. Calcif Tissue Int 42:167–180PubMedCrossRefGoogle Scholar
  22. 22.
    Weiner S, Traub W, Wagner HD (1999) Lamellar bone structure-function relations. J Struct Biol 126:241–255PubMedCrossRefGoogle Scholar
  23. 23.
    Rubin MA, Jasiuk I (2005) The TEM characterization of the lamellar structure of osteoporotic human trabecular bone. Micron 36:653–664PubMedCrossRefGoogle Scholar
  24. 24.
    Marotti G, Ferretti M, Palumbo C (2013) The problem of bone lamellation: an attempt to explain different proposed models. J Morphol 274:543–550PubMedCrossRefGoogle Scholar
  25. 25.
    Paschalis EP, Glass EV, Donley DW, Eriksen EF (2005) Bone mineral and collagen quality in iliac crest biopsies of patients given teriparatide: new results from the fracture prevention trial. J Clin Endocrinol Metab 90:4644–4649PubMedCrossRefGoogle Scholar
  26. 26.
    Spalazzi JP, Boskey AL, Pleshko N, Lu HH (2013) Quantitative mapping of matrix content and distribution across the ligament-to-bone insertion. PLoS One 8:e74349PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Lattermann A, Matthäus C, Bergner N, Beleites C, Romeike BF, Krafft C, Brehm BR, Popp J (2013) Characterization of atherosclerotic plaque depositions by Raman and FTIR imaging. J Biophotonics 6:110–121PubMedCrossRefGoogle Scholar
  28. 28.
    Boskey AL, Verdelis K, Spevak L, Lukashova L, Beniash E, Yang X, Cabral WA, Marini JC (2013) Mineral and matrix changes in Brtl/+ teeth provide insights into mineralization mechanisms. Biomed Res Int 2013:295812PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Samuel Gourion-Arsiquaud
    • 1
  • Curtis Marcott
    • 2
  • Qichi Hu
    • 3
  • Adele L. Boskey
    • 4
  1. 1.TRI PrincetonPrincetonUSA
  2. 2.Light Light SolutionsAthensUSA
  3. 3.Anasys InstrumentsSanta BarbaraUSA
  4. 4.Mineralized Tissue LaboratoryHospital for Special SurgeryNew YorkUSA

Personalised recommendations