Skip to main content

Advertisement

Log in

Relationship of Bone Mineralization Density Distribution (BMDD) in Cortical and Cancellous Bone Within the Iliac Crest of Healthy Premenopausal Women

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Bone mineralization density distribution (BMDD) is an important determinant of bone mechanical properties. The most available skeletal site for access to the BMDD is the iliac crest. Compared to cancellous bone much less information on BMDD is available for cortical bone. Hence, we analyzed complete transiliac crest bone biopsy samples from premenopausal women (n = 73) aged 25–48 years, clinically classified as healthy, by quantitative backscattered electron imaging for cortical (Ct.) and cancellous (Cn.) BMDD. The Ct.BMDD was characterized by the arithmetic mean of the BMDD of the cortical plates. We found correlations between Ct. and Cn. BMDD variables with correlation coefficients r between 0.42 and 0.73 (all p < 0.001). Additionally to this synchronous behavior of cortical and cancellous compartments, we found that the heterogeneity of mineralization densities (Ct.CaWidth), as well as the cortical porosity (Ct.Po) was larger for a lower average degree of mineralization (Ct.CaMean). Moreover, Ct.Po correlated negatively with the percentage of highly mineralized bone areas (Ct.CaHigh) and positively with the percentage of lowly mineralized bone areas (Ct.CaLow). In conclusion, the correlation of cortical with cancellous BMDD in the iliac crest of the study cohort suggests coordinated regulation of bone turnover between both bone compartments. Only in a few cases, there was a difference in the degree of mineralization of >1wt % between both cortices suggesting a possible modeling situation. This normative dataset of healthy premenopausal women will provide a reference standard by which disease- and treatment-specific effects can be assessed at the level of cortical bone BMDD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Recker RR, Barger-Lux MJ (2006) Bone biopsy and histomorphometry in clinical practice. Primer on the metabolic bone diseases and disorders of mineral metabolism. American Society for Bone and Mineral Research, Chapter 24, Washington, DC, pp 161–169

    Google Scholar 

  2. Currey JD (2004) Tensile yield in compact bone is determined by strain, post-yield behaviour by mineral content. J Biomech 37:549–556

    Article  PubMed  Google Scholar 

  3. Fratzl P, Gupta HS, Paschalis EP, Roschger P (2004) Structure and mechanical quality of the collagen-mineral nano-composite in bone. J Mater Chem 14:2115–2123

    Article  CAS  Google Scholar 

  4. Boivin G, Meunier PJ (2003) Methodological considerations in measurement of bone mineral content. Osteoporosis Int 14(Suppl 5):S22–S28

    Article  Google Scholar 

  5. Boivin G, Meunier PJ (2002) The degree of mineralization of bone tissue measured by computerized quantitative contact microradiography. Calcif Tissue Int 70:503–511

    Article  PubMed  CAS  Google Scholar 

  6. Nuzzo S, Lafage-Proust MH, Martin-Badosa E, Boivin G, Thomas T, Alexandre C, Peyrin F (2002) Synchrotron radiation microtomography allows the analysis of three-dimensional microarchitecture and degree of mineralization of human iliac crest biopsy specimens: effect of etidronate treatment. J Bone Miner Res 17:1372–1382

    Article  PubMed  CAS  Google Scholar 

  7. Borah B, Dufresne TE, Ritman EL, Jorgensen SM, Liu S, Chmielewski PA, Phipps RJ, Zhou X, Sibonga JD, Turner RT (2006) Long-term risedronate treatment normalizes mineralization and continues to preserve trabecular architecture: sequential triple biopsy studies with micro-computed tomography. Bone 39:345–352

    Article  PubMed  CAS  Google Scholar 

  8. Boyde A, Jones SJ (1983) Backscattered electron imaging of skeletal tissues. Metab Bone Dis Rel Res 5:145–150

    Article  Google Scholar 

  9. Bloebaum RD, Skedros JG, Vajda EG, Bachus KN, Constantz BR (1997) Determining mineral content variations in bone using backscattered electron imaging. Bone 20:485–490

    Article  PubMed  CAS  Google Scholar 

  10. Roschger P, Fratzl P, Eschberger J, Klaushofer K (1998) Validation of quantitative backscattered electron imaging for the measurement of mineral density distribution in human bone biopsies. Bone 23:319–326

    Article  PubMed  CAS  Google Scholar 

  11. Roschger P, Paschalis EP, Fratzl P, Klaushofer K (2008) Bone mineralization density distribution in health and disease. Bone 42:456–466

    Article  PubMed  CAS  Google Scholar 

  12. Roschger P, Gupta HS, Berzlanovich A, Ittner G, Dempster DW, Fratzl P, Cosman F, Parisien M, Lindsay R, Nieves JW, Klaushofer K (2003) Constant mineralization density distribution in cancellous human bone. Bone 32:316–323

    Article  PubMed  CAS  Google Scholar 

  13. Parfitt AM (1998) A structural approach to renal bone disease. J Bone Miner Res 13:1213–1220

    Article  PubMed  CAS  Google Scholar 

  14. Epstein S (2007) Is cortical bone hip? What determines cortical bone properties? Bone 41:S3–S8

    Article  PubMed  Google Scholar 

  15. Parfitt AM (2002) Misconceptions (2): turnover is always higher in cancellous than in cortical bone. Bone 30:807–809

    Article  PubMed  CAS  Google Scholar 

  16. Zebaze RM, Ghasem-Zadeh A, Bohte A, Iuliano-Burns S, Mirams M, Price RI, Mackie EJ, Seeman E (2010) Intracortical remodeling and porosity in the distal radius and post-mortem femurs of women: a cross-sectional study. Lancet 375:1729–1736

    Article  PubMed  Google Scholar 

  17. Misof BM, Roschger P, Cosman F, Kurland ES, Tesch W, Messmer P, Dempster DW, Shane E, Fratzl P, Klaushofer K, Bilezikian J, Lindsay R (2003) Effects of intermittent parathyroid hormone administration on bone mineralization density in iliac crest biopsies from patients with osteoporosis: a paired study before and after treatment. J Clin Endocrinol Metab 88:1150–1156

    Article  PubMed  CAS  Google Scholar 

  18. Misof BM, Paschalis EP, Blouin S, Fratzl-Zelman N, Klaushofer K, Roschger P (2010) Effects of 1 year of daily teriparatide treatment on iliacal bone mineralization density distribution (BMDD) in postmenopausal osteoporotic women previously treated with alendronate or risedronate. J Bone Miner Res 25(11):2297–2303

    Article  PubMed  CAS  Google Scholar 

  19. Boyde A, Compston JE, Reeve J, Bell KL, Noble BS, Jones SJ, Loveridge N (1998) Effect of estrogen suppression on the mineralization density of iliac crest biopsies in young women as assessed by backscattered electron imaging. Bone 22:241–250

    Article  PubMed  CAS  Google Scholar 

  20. Boivin G, Vedi S, Purdie DW, Compston JE, Meunier PJ (2005) Influence of estrogen therapy at conventional and high doses on the degree of mineralization of iliac bone tissue: a quantitative microradiographic analysis in postmenopausal women. Bone 36:562–567

    Article  PubMed  CAS  Google Scholar 

  21. Misof BM, Bodingbauer M, Roschger P, Wekerle T, Pakrah B, Haas M, Kainz A, Oberbauer R, Mühlbacher F, Klaushofer K (2008) Short-term effects of high-dose zoledronic acid treatment ob bone mineralization density distribution after orthotopic liver transplantation. Calcif Tissue Int 83:167–175

    Article  PubMed  CAS  Google Scholar 

  22. Misof BM, Roschger P, Gabriel D, Paschalis EP, Eriksen EF, Recker RR, Gasser JA, Klaushofer K (2013) Annual intravenous zoledronic acid for three years increased cancellous bone matrix mineralization beyond normal values in the HORIZON biopsy cohort. J Bone Miner Res 28(3):442–448

    Article  PubMed  CAS  Google Scholar 

  23. Parisien M, Cosman E, Morgan D, Schnitzer M, Liang X, Nieves J, Forese L, Luckey M, Meier D, Shen V, Lindsay R, Dempster DW (1997) Histomorphometric assessment of bone mass, structure, and remodeling: a comparison between healthy black and white premenopausal women. J Bone Miner Res 12:948–957

    Article  PubMed  CAS  Google Scholar 

  24. Cohen A, Recker RR, Lappe J, Dempster DW, Cremers S, McMahon DJ, Stein EM, Fleischer J, Rosen CJ, Rogers H, Staron RB, Lemaster J, Shane E (2012) Premenopausal women with idiopathic low-trauma fractures and/or low bone mineral density. Osteoporos Int 23:171–182

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Cohen A, Dempster DW, Recker RR, Stein EM, Lappe JM, Zhou H, Wirth AJ, van Lenthe GH GH, Kohler T, Zwahlen A, Müller R, Rosen CJ, Cremers S, Nickolas TL, McMahon DJ, Rogers H, Staron RB, LeMaster J, Shane E (2011) Abnormal bone microarchitecture and evidence of osteoblast dysfunction in premenopausal women with idiopathic osteoporosis. J Clin Endocrinol Metab 96:3095–3105

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Roschger P, Plenk H Jr, Klaushofer K, Eschberger J (1995) A new scanning electron microscopy approach to the quantification of bone mineral distribution: backscattered electron image grey-levels correlated to calcium K alpha-line intensities. Scanning Microsc 9(1):75–86

    PubMed  CAS  Google Scholar 

  27. Karunaratne A, Esapa CR, Hiller J, Boyde A, Head R, Bassett JH, Terrill NJ, Williams GR, Brown MA, Croucher PI, Brown SD, Cox RD, Barber AH, Thakker RV, Gupta HS (2012) Significant deterioration in nanomechanical quality occurs through incomplete extrafibrillar mineralization in rachitic bone: evidence from in situ synchrotron X-ray scattering and backscattered electron imaging. J Bone Miner Res 27:876–890

    Article  PubMed  Google Scholar 

  28. Zizak I, Roschger P, Paris O, Misof BM, Berzlanovich A, Bernstorff S, Amenitsch H, Klaushofer K, Fratzl P (2003) Characteristics of mineral particles in the human bone/cartilage interface. J Struct Biol 141:208–217

    Article  PubMed  CAS  Google Scholar 

  29. Roschger P, Manjubala I, Zoeger N, Meirer F, Simon R, Li C et al (2010) Bone material quality in transiliac bone biopsies of postmenopausal osteoporotic women after 3 years of strontium ranelate treatment. J Bone Miner Res 25(4):891–900

    PubMed  Google Scholar 

  30. Roschger P, Fratzl P, Eschberger J, Klaushofer K (1999) Response to the Letter to the Editor by E.G Vajda and J.G. Skedros. Bone 24:619–621

    Article  Google Scholar 

  31. Lukas C, Kollmannsberger P, Ruffoni D, Roschger P, Fratzl P, Weinkamer R (2011) The heterogeneous mineral content of bone: using stochastic arguments and simulations to overcome experimental limitations. J Stat Phys 144:316–331

    Article  CAS  Google Scholar 

  32. Borah B, Dufresne T, Nurre J, Phipps R, Chmielewski P, Wagner L, Lundy M, Bouxsein M, Zebaze R, Seeman E (2010) Risedronate reduces intracortical porosity in women with osteoporosis. J Bone Miner Res 25:41–47

    Article  PubMed  CAS  Google Scholar 

  33. Zoehrer R, Roschger P, Fratzl P, Durchschlag E, Paschalis E, Phipps R, Klaushofer K (2006) Effects of 3- and 5-year treatment with Risedronate on the bone mineral density distribution of cancellous bone in human iliac crest biopsies. J Bone Miner Res 21:1106–1112

    Article  PubMed  CAS  Google Scholar 

  34. Ruffoni D, Fratzl P, Roschger P, Klaushofer K, Weinkamer R (2007) The bone mineralization density distribution as a fingerprint of the mineralization process. Bone 40:1308–1319

    Article  PubMed  CAS  Google Scholar 

  35. Balena R, Shih MS, Parfitt AM (1992) Bone resorption and formation on the periosteal envelope of the ilium: a histomorphometric study in healthy women. J Bone Miner Res 7:1475–1482

    Article  PubMed  CAS  Google Scholar 

  36. Han Z-H, Palnitkar S, Rao DS, Nelson D, Parfitt AM (1997) Effects of ethnicity and age or menopause on the remodeling and turnover of iliac bone: implications for mechanisms of bone loss. J Bone Miner Res 12:498–508

    Article  PubMed  CAS  Google Scholar 

  37. Parfitt AM, Han Z-H, Palnitkar S, Sudhaker Rao D, Shih M-S, Nelson D (1997) Effects of ethnicity and age or menopause on osteoblast function, bone mineralization, and osteoid accumulation in iliac bone. J Bone Miner Res 12:1864–1873

    Article  PubMed  CAS  Google Scholar 

  38. Rauch F, Travers R, Glorieux FH (2006) Cellular activity on the seven surfaces of iliac bone: a histomorphometric study in children and adolescents. J Bone Miner Res 21:513–519

    Article  PubMed  Google Scholar 

  39. Tanizawa T, Itoh A, Uchiyama T, Zhang L, Yamamoto N (1999) Changes in cortical width with bone turnover in the three different endosteal envelopes of the ilium in postmenopausal osteoporosis. Bone 25:493–499

    Article  PubMed  CAS  Google Scholar 

  40. Boyde A, Travers R, Glorieux FH, Jones SJ (1999) The mineralization density of iliac crest bone from children with osteogenesis imperfecta. Calcif Tissue Int 64:185–190

    Article  PubMed  CAS  Google Scholar 

  41. Fratzl-Zelman N, Roschger P, Misof BM, Pfeffer S, Glorieux FH, Klaushofer K, Rauch F (2009) Normative data on mineralization density distribution in iliac bone biopsies of children, adolescents and young adults. Bone 44:1043–1048

    Article  PubMed  CAS  Google Scholar 

  42. Parfitt AM, Travers R, Rauch F, Glorieux FH (2000) Structural and cellular changes during bone growth in healthy children. Bone 27:487–494

    Article  PubMed  CAS  Google Scholar 

  43. Rauch F, Travers R, Glorieux FH (2007) Intracortical remodeling during human bone development: a histomorphometric study. Bone 40:274–280

    Article  PubMed  Google Scholar 

  44. Reid SA, Boyde A (1987) Changes in the mineral density distribution in human bone with age: image analysis using backscattered electrons in the SEM. J Bone Miner Res 2:13–22

    Article  PubMed  CAS  Google Scholar 

  45. Kingsmill VJ, Gray CM, Moles DR, Boyde A (2007) Cortical vascular canals in human mandible and other bones. J Dent Res 86:368–372

    Article  PubMed  CAS  Google Scholar 

  46. Loveridge N, Power J, Reeve J, Boyde A (2004) Bone mineralization density and femoral neck fragility. Bone 35:929–941

    Article  PubMed  Google Scholar 

  47. Fratzl-Zelman N, Roschger P, Gourrier A, Weber M, Misof BM, Loveridge N, Reeve J, Klaushofer K, Fratzl P (2009) Combination of nanoindentation and quantitative backscattered electron imaging revealed altered bone material properties associated with femoral neck fragility. Calcif Tissue Int 85:335–343

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  48. Donnelly E, Meredith DS, Nguyen JT, Gladnick BP, Rebolledo BJ, Shaffer AD, Lorich DG, Lane JM, Boskey AL (2012) Reduced cortical bone compositional heterogeneity with bisphosphonate treatment in postmenopausal women with intertrochanteric and subtrochanteric fractures. J Bone Miner Res 27(3):672–678

    Article  PubMed  CAS  Google Scholar 

  49. Fratzl-Zelman N, Roschger P, Misof BM, Nawrot-Wawrzyniak K, Pötter-Lang S, Muschitz C, Resch H, Klaushofer K, Zwettler E (2011) Fragility fractures in men with idiopathic osteoporosis are associated with undermineralization of the bone matrix without evidence of increased bone turnover. Calcif Tissue Int 88(5):378–387

    Article  PubMed  CAS  Google Scholar 

  50. Schnitzler CM, Mesquita JM (2006) Cortical bone histomorphometry of the iliac crest in normal black and white South African adults. Calcif Tissue Int 79:373–382

    Article  PubMed  CAS  Google Scholar 

  51. Schnitzler CM, Mesquita JM (2013) Cortical porosity in children is determined by age-dependent osteonal morphology. Bone 55(2):476–486

    Article  PubMed  Google Scholar 

  52. Bell KL, Loveridge N, Reeve J, Thomas CD, Feik SA, Clement JG (2001) Super-osteons (remodeling clusters) in the cortex of the femoral shaft: influence of age and gender. Anat Rec 264(4):378–386

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank G. Dinst, D. Gabriel, P. Messmer, and S. Thon for careful sample preparation and qBEI measurements at the Bone Material Laboratory of the Ludwig Boltzmann Institute of Osteology, Vienna, Austria. This work was supported by the AUVA (Austrian Social Insurance for Occupational Risk), the WGKK (Social Health Insurance Vienna), and the NIH Grants AR41386 and DK32333.

Conflict of Interest

Dr. J. P. Bilezikian received institutional Grant support from NPS and Amgen, and is consultant for NPS, Amgen, Merck, Lilly, Radius, and Johnson & Johnson, outside the submitted work. B. M. Misof, D. W. Dempster, Hua Zhou, P. Roschger, N. Fratzl-Zelman, P. Fratzl, S. J. Silverberg, E. Shane, A. Cohen, E. Stein, T. L. Nickolas, R. R. Recker, J. Lappe, and K. Klaushofer declare that they have nothing to disclose.

Human and Animal Rights and Informed Consent

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2000. Informed consent was obtained from all patients for being included in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. M. Misof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Misof, B.M., Dempster, D.W., Zhou, H. et al. Relationship of Bone Mineralization Density Distribution (BMDD) in Cortical and Cancellous Bone Within the Iliac Crest of Healthy Premenopausal Women. Calcif Tissue Int 95, 332–339 (2014). https://doi.org/10.1007/s00223-014-9901-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-014-9901-4

Keywords

Navigation