Skip to main content

Advertisement

Log in

A Comparative Study of Dual-X-ray Absorptiometry and Quantitative Ultrasonography for the Evaluating Bone Status in Subjects with Rett Syndrome

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Rett syndrome, an X-linked neurodevelopmental disorder primarily affecting girls, is frequently characterized by a reduced bone mineral density (BMD) with an increased risk of fragility fractures. The aim of the study was to assess bone status by DXA technique and by quantitative ultrasound (QUS) in subjects with Rett syndrome and to evaluate which DXA or QUS parameters better correlate with clinical features. In 156 Rett subjects (mean age 13.6 ± 8.2 years) and in 62 controls, we measured BMD at femoral neck (BMD-FN) and at total femur (BMD-TF). Apparent volumetric bone mineral density (vBMAD) was also calculated. In all subjects, QUS parameters at phalanges by Bone Profiler-IGEA (amplitude-dependent speed of sound: AD-SoS and bone transmission time: BTT) were evaluated. We found that both DXA parameters and QUS parameters were significantly lower in Rett subjects than in controls. All clinical characteristics were positively correlated to BMD-FN, BMD-TF, AD-SoS, and BTT (p < 0.001) but not with vBMAD-FN. All ultrasonographic parameters were significantly correlated to BMD-FN and BMD-TF, whereas vBMAD-FN showed only positive significant correlation with densitometric parameters (p < 001). In Rett subjects BMD-FN was predicted primarily by weight and movement capacity, whereas vBMAD-FN was predicted by weight, height, and calcium intake. Moreover, AD-SoS was predicted by weight, height, and age, while BTT was predicted only by height. In conclusion, in our study the performance of QUS at phalanges was similar to those of BMD at femur, therefore, both areal BMD at femur and QUS at phalanges (AD-SoS and BTT) may be equally useful in the evaluation of skeletal status in Rett patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Neul JL, Kaufmann WE, Glaze DG, Christodoulou J, Clarke AJ, Bahi-Buisson N, Leonard H, Bailey ME, Schanen NC, Zappella M, Renieri A, Huppke P, Percy AK, RettSearch Consortium (2010) Rett syndrome: revised diagnostic criteria and nomenclature. Ann Neurol 68:944–950

    Article  PubMed Central  PubMed  Google Scholar 

  2. Hagberg B (2002) Clinical manifestations and stages of Rett syndrome. Ment Retard Dev Disabil Res Rev 8:61–65

    PubMed  Google Scholar 

  3. Schultz RJ, Glaze DG, Motil KG, Armstrong DD, del Junco DJ, Hubbard CR, Percy AK (1993) The pattern of growth failure in Rett syndrome. Am J Dis Child 147:633–637

    CAS  PubMed  Google Scholar 

  4. Julu PO, Kerr AM, Apartopoulos F, Al-Rawas S, Engerström IW, Engerström L, Jamal GA, Hansen S (2001) Characterization of breathing and associated central autonomic dysfunction in the Rett disorder. Arch Dis Child 85:29–37

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Chahrour M, Zoghb HY (2007) The story of Rett syndrome: from clinic to neurobiology. Neuron 56:422–437

    Article  CAS  PubMed  Google Scholar 

  6. Haas RH, Dixon SD, Sartoris DJ, Hennessy MJ (1997) Osteopenia in Rett syndrome. J Pediatr 131:771–774

    Article  CAS  PubMed  Google Scholar 

  7. Leonard H, Thompson M, Glasson E, Fyfe S, Leonard S, Ellaway C, Bower C, Christodoulou J, Ellaway C (1999) Metacarpophalangeal pattern profile and bone age in Rett syndrome: further radiological clues to the diagnosis. Am J Med Genet 83:88–95

    Article  CAS  PubMed  Google Scholar 

  8. Cepollaro C, Gonnelli S, Bruni D, Pacini S, Martini S, Franci MB, Rossi S, Hayek J, Zappella M, Gennari C (2001) Dual X-ray absorptiometry and bone ultrasonography in patients with Rett syndrome. Calcif Tissue Int 69:259–262

    Article  CAS  PubMed  Google Scholar 

  9. Ellis KJ, Shypailo RJ, Hardin DS, Perez MD, Motil KJ, Wong WW, Abrams SA (2001) Z score prediction model for assessment of bone mineral content in paediatric diseases. J Bone Miner Res 16:1658–1664

    Article  CAS  PubMed  Google Scholar 

  10. Budden SS, Gunness ME (2003) Possible mechanisms of osteopenia in Rett syndrome: bone histomorphometric studies. J Child Neurol 18:698–702

    Article  PubMed  Google Scholar 

  11. Zysman L, Lotan M, Ben-Zeev B (2006) Osteoporosis in Rett syndrome: a study on normal values. Sci World J 6:1619–1630

    Article  CAS  Google Scholar 

  12. Motil KJ, Ellis KJ, Barrish JO, Caeg E, Glaze DG (2008) Bone mineral content and bone mineral density are lower in older than in younger females with Rett syndrome. Pediatr Res 64:435–439

    Article  PubMed Central  PubMed  Google Scholar 

  13. Gonnelli S, Caffarelli C, Hayek J, Montagnani A, Cadirni A, Franci B, Lucani B, Rossi S, Nuti R (2008) Bone ultrasonography at phalanxes in patients with Rett syndrome: a 3-year longitudinal study. Bone 42:737–742

    Article  CAS  PubMed  Google Scholar 

  14. Downs J, Bebbington A, Woodhead H, Jacoby P, Jian L, Jefferson A, Leonard H (2008) Early determinants of fractures in Rett syndrome. Pediatrics 121:540–546

    Article  PubMed  Google Scholar 

  15. Shapiro JR, Bibat G, Hiremath G, Blue ME, Hundalani S, Yablonski T, Kantipuly A, Rohde C, Johnston M, Naidu S (2010) Bone mass in Rett syndrome: association with clinical parameters and MECP2 mutations. Pediatr Res 68:446–451

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Jefferson AL, Woodhead HJ, Fyfe S, Briody J, Bebbington A, Strauss BJ, Jacoby P, Leonard H (2011) Bone mineral content and density in Rett syndrome and their contributing factors. Pediatr Res 69:293–298

    Article  PubMed Central  PubMed  Google Scholar 

  17. Roende G, Ravn K, Fuglsang K, Andersen H, Nielsen JB, Brøndum-Nielsen, Jensen JE (2011) DXA-measurements in Rett syndrome reveal small bones with low bone mass. J Bone Miner Res 26:2280–2286

    Article  CAS  PubMed  Google Scholar 

  18. Roende G, Ravn K, Fuglsang K, Andersen H, Vestergaard A, Brøndum-Nielsen K, Jensen JE, Nielsen JP (2011) Patients with Rett syndrome sustain low-energy fractures. Pediatr Res 69:359–364

    Article  PubMed  Google Scholar 

  19. Caffarelli C, Gonnelli S, Tanzilli L, Hayek J, Vichi V, Franci MB, Lucani B, Nuti R (2012) The relationship between serum ghrelin and body composition with bone mineral density and QUS parameters in subjects with Rett syndrome. Bone 50:830–835

    Article  CAS  PubMed  Google Scholar 

  20. Gluer CC, International Quantitative Ultrasound Consensus Group (1997) Quantitative ultrasound techniques for the assessment of osteoporosis: expert agreement on current status. J Bone Miner Res 12:1280–1288

    Article  CAS  PubMed  Google Scholar 

  21. Baroncelli GI (2008) Quantitative ultrasound methods to assess bone mineral status in children: technical characteristics, performance, and clinical application. Pediatr Res 63:220–228

    Article  PubMed  Google Scholar 

  22. Baroncelli GI, Federico G, Vignolo M, Valerio G, del Puente A, Maghnie M, Baserga M, Farello G, Saggese G, Phalangeal Quantitative Ultrasound Group (2006) Cross-sectional reference data for phalangeal quantitative ultrasound from early childhood to young-adulthood according to gender, age, skeletal growth, and pubertal development. Bone 39:159–173

    Article  PubMed  Google Scholar 

  23. Hagberg B, Hanefeld F, Percy A, Skjeldal O (2002) An update on clinically applicable diagnostic criteria in Rett syndrome. Eur J Paediatr Neurol 6:293–297

    PubMed  Google Scholar 

  24. Carter DR, Bouxsein ML, Marcus R (1992) New approaches for interpreting projected bone densitometry data. J Bone Miner Res 7:37–145

    Article  Google Scholar 

  25. Lu PW, Cowell CT, Loyd-Jones SA, Briody JN, Howman-Giles R (1996) Volumetric bone mineral density in normal subjects, aged 5–27 years. J Clin Endocrinol Metab 81:1586–1590

    CAS  PubMed  Google Scholar 

  26. Ward KA, Ashby RL, Roberts SA, Adams JE, Mughal MZ (2007) UK reference data for the Hologic QDR Discovery dual energy X-ray absorptiometry scanner in healthy children aged 6–17 years. Arch Dis Child 92:53–59

    Article  PubMed Central  PubMed  Google Scholar 

  27. Wuster C, Albanese C, De Aloysio D, Duboeuf F, Gambacciani M, Gonnelli S, Gluer CC, Hans D, Joly J, Register YJ, De Terlizzi F, Cadossi R, The Phalangeal Osteosonogrammetry Study Group (2000) Phalangeal osteosonogrammetry study: age-related changes, diagnostic sensitivity, and discrimination power. J Bone Miner Res 15:1603–1614

    Article  CAS  PubMed  Google Scholar 

  28. Montagnani A, Gonnelli S, Cepollaro C, Bruni D, Franci MB, Lucani B, Gennari C (2002) Graphic trace analysis of quantitative ultrasound at phalanxes seems to improve the diagnosis of primary hyperparathyroidism among patients with low bone mass. Osteoporos Int 13:222–227

    Article  CAS  PubMed  Google Scholar 

  29. Barkmann R, Lusse S, Stampa B, Sakata S, Heller M, Gluer CC (2000) Assessment of the geometry of human finger phalanges using quantitative ultrasound in vivo. Osteoporos Int 11:745–755

    Article  CAS  PubMed  Google Scholar 

  30. Bianchi ML (2007) Osteoporosis in children and adolescents. Bone 41:486–495

    Article  PubMed  Google Scholar 

  31. Gordon CM, Bachrach LK, Carpenter TO, Crabtree N, El-Hajj Fuleihan G, Kutilek S, Lorenc RS, Tosi LL, Ward KA, Ward LM, Kalkwarf HJ (2008) Dual energy X-ray absorptiometry interpretation and reporting in children and adolescents: the 2007 ISCD Pediatric Official Positions. J Clin Densitom 11:43–58

    Article  PubMed  Google Scholar 

  32. Crabtree NJ, Arabi A, Bachrach LK, Fewtrell M, El-Hajj Fuleihan G, Kecskemethy HH, Jaworski M, Gordon CM (2014) Dual-energy X-ray absorptiometry interpretation and reporting in children and adolescents: the revised 2013 ISCD Pediatric Official Positions. J Clin Densitom. doi:10.1016/j.jocd.2014.01.003

  33. Bachrach LK, Sills IN, Section on Endocrinology (2011) Clinical report—bone densitometry in children and adolescents. Pediatrics 127:189–194

    Article  PubMed  Google Scholar 

  34. Leonard MB, Bachrach LK (2001) Assessment of bone mineralization following renal transplantation in children: limitations of DXA and confounding effects of delayed growth and development. Am J Transpl 1:193–1969

    Article  CAS  Google Scholar 

  35. Specker BL, Schoenau E (2005) Quantitative bone analysis in children: current methods and recommendations. J Pediatr 146:726–73110

    Article  PubMed  Google Scholar 

  36. Jergas M, Breitenseher M, Gluer CC, Yu W, Genant HK (1995) Estimates of volumetric bone density from projectional measurements improve the discriminatory capability of dual X-ray absorptiometry. J Bone Miner Res 10:1101–1110

    Article  CAS  PubMed  Google Scholar 

  37. Kroger H, Kotaniemi A, Vainio P, Alhava E (1992) Bone densitometry of the spine and femur in children by dual-energy X-ray absorptiometry. Bone Miner 17:75–85

    Article  CAS  PubMed  Google Scholar 

  38. Pluskiewicz W, Adamczyk P, Drozdzowska B, Szprynger K, Szczepanska M, Halaba Z, Karasek D (2003) Skeletal status in children and adolescents with chronic renal failure before onset of dialysis or on dialysis. Osteoporos Int 14:283–288

    Article  CAS  PubMed  Google Scholar 

  39. Fielding KT, Nix DA, Bachrach LK (2003) Comparison of calcaneus ultrasound and dual X-ray absorptiometry in children at risk of osteopenia. J Clin Densitom 6:7–15

    Article  PubMed  Google Scholar 

  40. Baroncelli GI, Federico G, Bertelloni S, Sodini F, De Terlizzi F, Cadossi R, Saggese G (2003) Assessment of bone quality by quantitative ultrasound of proximal phalanxes of the hand and fracture rate in children and adolescents with bone and mineral disorders. Pediatr Res 54:125–13630

    Article  PubMed  Google Scholar 

  41. Christoforidis A, Perifanis V, Papadopoulou E, Dimitriadou M, Kazantzidou E, Vlachaki E, Tsatra I (2009) Poor correlations between measurements of bone quality by quantitative ultrasound sonography and dual energy X-ray absorptiometry in patients with beta-thalassaemia major. Eur J Haematol 82:15–21

    Article  PubMed  Google Scholar 

  42. Christoforidis A, Printza N, Gkogka C, Siomou E, Challa A, Kazantzidou E, Kollios K, Papachristou F (2011) Comparative study of quantitative ultrasonography and dual-energy X-ray absorptiometry for evaluating renal osteodystrophy in children with chronic kidney disease. J Bone Miner Metab 29:321–327

    Article  PubMed  Google Scholar 

Download references

Human and Animal Rights and Informed Consent

All procedures performed in the present study was in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants included in the study.

Disclosures

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Caffarelli.

Additional information

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caffarelli, C., Hayek, J., Pitinca, M.D.T. et al. A Comparative Study of Dual-X-ray Absorptiometry and Quantitative Ultrasonography for the Evaluating Bone Status in Subjects with Rett Syndrome. Calcif Tissue Int 95, 248–256 (2014). https://doi.org/10.1007/s00223-014-9888-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-014-9888-x

Keywords

Navigation