Skip to main content

Subregional DXA-Derived Vertebral Bone Mineral Measures are Stronger Predictors of Failure Load in Specimens with Lower Areal Bone Mineral Density, Compared to Those with Higher Areal Bone Mineral Density

Abstract

Measurement of areal bone mineral density (aBMD) in intravertebral subregions may increase the diagnostic sensitivity of dual-energy X-ray absorptiometry (DXA)-derived parameters for vertebral fragility. This study investigated whether DXA-derived bone parameters in vertebral subregions were better predictors of vertebral bone strength in specimens with low aBMD, compared to those with higher aBMD. Twenty-five lumbar vertebrae (15 embalmed and 10 fresh-frozen) were scanned with posteroanterior- (PA) and lateral-projection DXA, and then mechanically tested in compression to ultimate failure. Whole-vertebral aBMD and bone mineral content (BMC) were measured from the PA- and lateral-projection scans and within 6 intravertebral subregions. Multivariate regression was used to predict ultimate failure load by BMC, adjusted for vertebral size and specimen fixation status across the whole specimen set, and when subgrouped into specimens with low aBMD and high aBMD. Adjusted BMC explained a substantial proportion of variance in ultimate vertebral load, when measured over the whole vertebral area in lateral projection (adjusted R 2 0.84) and across the six subregions (ROIs 2–7) (adjusted R 2 range 0.58–0.78). The association between adjusted BMC, either measured subregionally or across the whole vertebral area, and vertebral failure load, was increased for the subgroup of specimens with identified ‘low aBMD’, compared to those with ‘high aBMD’, particularly in the anterior subregion where the adjusted R 2 differed by 0.44. The relative contribution of BMC measured in vertebral subregions to ultimate failure load is greater among specimens with lower aBMD, compared to those with higher aBMD, particularly in the anterior subregion of the vertebral body.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Banse X, Devogelaer JP, Munting E, Delloye C, Cornu O, Grynpas M (2001) Inhomogeneity of human vertebral cancellous bone: systematic density and structure patterns inside the vertebral body. Bone 28:563–571

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    Briggs AM, Perilli E, Parkinson IH, Kantor S, Wrigley TV, Fazzalari NL, Wark JD (2012) Measurement of subregional vertebral bone mineral density in vitro using lateral projection dual-energy X-ray absorptiometry: validation with peripheral quantitative computed tomography. J Bone Miner Metab 30:222–231

    PubMed  Article  Google Scholar 

  3. 3.

    Briggs AM, Perilli E, Parkinson IH, Wrigley TV, Fazzalari NL, Kantor S, Wark JD (2010) Novel assessment of subregional bone mineral density using DXA and pQCT, and subregional micro-architecture using micro-CT in whole human vertebrae: applications, methods, and correspondence between technologies. J Clin Densitom 13:161–174

    PubMed  Article  Google Scholar 

  4. 4.

    Cvijanovic O, Bobinac D, Zoricic S, Ostojic Z, Maric I, Crncevic-Orlic Z, Kristofic I, Ostojic L (2004) Age and region dependent changes in human lumbar vertebral bone. A histomorphometric study. Spine 24:2370–2375

    Article  Google Scholar 

  5. 5.

    Simpson EK, Parkinson IH, Manthey B, Fazzalari NL (2001) Intervertebral disc disorganisation is related to trabecular bone architecture in the lumbar spine. J Bone Miner Res 16:681–687

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Briggs AM, Wark JD, Kantor S, Teh R, Greig AM, Fazzalari NL, Bennell KL (2005) In vivo intra-rater and inter-rater precision of measuring apparent bone mineral density in vertebral subregions using supine lateral dual-energy X-ray absorptiometry (DXA). J Clin Densitom 8:314–319

    PubMed  Article  Google Scholar 

  7. 7.

    Hulme PA, Boyd SK, Ferguson SJ (2007) Regional variation in vertebral bone morphology and its contribution to vertebral fracture strength. Bone 41:946–957

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Hussein AI, Morgan EF (2013) The effect of intravertebral heterogeneity in microstructure on vertebral strength and failure patterns. Osteoporos Int 24:979–989

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  9. 9.

    McCubbery DA, Cody DD, Peterson EL, Kuhn JL, Flynn MJ, Goldstein SA (1995) Static and fatigue failure properties of thoracic and lumbar vertebral bodies and their relation to regional density. J Biomech 28:891–899

    Article  Google Scholar 

  10. 10.

    Kim DG, Hunt CA, Zauel R, Fyhrie DP, Yeni YN (2007) The effect of regional variations of the trabecular bone properties on the compressive strength of human vertebral bodies. Ann Biomed Eng 35:1907–1913

    PubMed  Article  Google Scholar 

  11. 11.

    Yeni YN, Zinno MJ, Yerramshetty JS, Zauel R, Fyhrie DP (2011) Variability of trabecular microstructure is age-, gender-, race-and anatomic site-dependent and affects stiffness and stress distribution properties of human vertebral cancellous bone. Bone 49:886–894

    PubMed Central  PubMed  Article  Google Scholar 

  12. 12.

    Engelke K, Fuerst T, Dasic G, Davies RY, Genant HK (2010) Regional distribution of spine and hip QCT BMD responses after one year of once-monthly ibandronate in postmenopausal osteoporosis. Bone 46:1626–1632

    PubMed  Article  Google Scholar 

  13. 13.

    Briggs AM, Greig AM, Wark JD (2007) The vertebral fracture cascade in osteoporosis. A review of aetiopathogenesis. Osteoporos Int 18:575–584

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Briggs AM, Wark JD, Greig AM, Fazzalari NL, Kantor S, Bennell KL (2009) Subregional bone mineral density measurement in the lumbar spine using DXA: potential for the application to osteoporosis and vertebral fractures. In: Mattingly BE, Pillare AC (eds) Osteoporosis: etiology, diagnosis and treatment. Nova Publishers, New York, pp 1–50

    Google Scholar 

  15. 15.

    Perilli E, Baleani M, Ohman C, Fognani R, Baruffaldi F, Viceconti M (2008) Dependence of mechanical compressive strength on local variations in microarchitecture in cancellous bone of proximal human femur. J Biomech 41:438–446

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Nazarian A, Stauber M, Zurakowski D, Snyder BD, Muller R (2006) The interaction of microstructure and volume fraction in predicting failure in cancellous bone. Bone 39:1196–1202

    PubMed  Article  Google Scholar 

  17. 17.

    Manning LI, Briggs AM, Van Doornum S, Kale A, Kantor S, Wark JD (2013) Glucocorticoid-induced bone loss is associated with abnormal intravertebral areal bone mineral density distribution. Int J Endocrinol 2013:768579

    PubMed Central  PubMed  Article  Google Scholar 

  18. 18.

    Perilli E, Briggs AM, Kantor S, Codrington J, Wark JD, Parkinson IH, Fazzalari NL (2012) Failure strength of human vertebrae: prediction using bone mineral density measured by DXA and bone volume by micro-CT. Bone 50:1416–1425

    PubMed  Article  Google Scholar 

  19. 19.

    Burklein D, Lochmuller EM, Kuhn V, Grimm J, Barkmann R, Muller R, Eckstein F (2001) Correlation of thoracic and lumbar vertebral failure loads with in situ vs. ex situ dual energy X-ray absorptiometry. J Biomech 34:579–587

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Jergas M, Genant HK (1997) Lateral dual X-ray absorptiometry of the lumbar spine: current status. Bone 20:311–314

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Zmuda JM, Cauley JA, Glynn NW, Finkelstein JS (2000) Posterior-anterior and lateral dual-energy X-ray absorptiometry for the assessment of vertebral osteoporosis and bone loss among older men. J Bone Miner Res 15:1417–1424

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Briggs AM, O’Sullivan PB, Foulner D, Wark JD (2012) Vertebral bone mineral measures and psychological wellbeing among individuals with modic changes. Clin Med Insights Case Rep 5:35–41

    PubMed Central  PubMed  Article  Google Scholar 

  23. 23.

    Briggs AM, Straker LM, Burnett AF, Wark JD (2012) Chronic low back pain is associated with reduced vertebral bone mineral measures in community-dwelling adults. BMC Musculoskelet Disord 13:49

    PubMed Central  PubMed  Article  Google Scholar 

  24. 24.

    Blake GM, Herd RJM, Fogelman I (1996) A longitudinal study of supine lateral DXA of the lumbar spine: a comparison with posteroanterior spine, hip and total-body DXA. Osteoporos Int 6:462–470

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Reid IR, Evans MC, Stapleton J (1992) Lateral spine densitometry is a more sensitive indicator of glucocorticoid-induced bone loss. J Bone Miner Res 7:1221–1225

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Finkelstein JS, Klibanski A, Arnold AL, Toth TL, Hornstein MD, Neer RM (1998) Prevention of estrogen deficiency-related bone loss with human parathyroid hormone-(1-34): a randomized controlled trial. J Am Med Assoc 280:1067–1073

    CAS  Article  Google Scholar 

  27. 27.

    Finkelstein JS, Wyland JJ, Leder BZ, Burnett-Bowie S-AM, Lee H, Jueppner H, Neer RM (2009) Effects of teriparatide retreatment in osteoporotic men and women. J Clin Endocrinol Metab 94:2495–2501

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  28. 28.

    Bjarnason K, Hassager C, Svendsen OL, Christiansen C (1996) Anteroposterior and lateral spinal DXA for the assessment of vertebral body strength: comparison with hip and forearm measurement. Osteoporos Int 6:37–42

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Edmondston SJ, Singer KP, Day RE, Breidahl PD, Price RI (1994) Formalin fixation effects on vertebral bone density and failure mechanics. An in-vitro study of human and sheep vertebrae. Clin Biomech 9:175–179

    CAS  Article  Google Scholar 

  30. 30.

    Briggs AM, Wark JD, Kantor S, Fazzalari NL, Greig AM, Bennell KL (2006) Bone mineral density distribution in thoracic and lumbar vertebrae: an ex vivo study using dual energy X-ray absorptiometry. Bone 38:286–288

    PubMed  Article  Google Scholar 

  31. 31.

    Edmondston SJ, Singer KP, Price RI, Breidahl PD (1993) Accuracy of lateral dual-energy X-ray absorptiometry for the determination of bone mineral content in the thoracic and lumbar spine: an in vitro study. Br J Radiol 66:309–313

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    Kaymakci B, Wark JD (1994) Precise accurate mineral measurements of excised sheep bones using X-Ray densitometry. Bone Miner 25:231–246

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Singer K, Edmondston S, Day R, Breidahl P, Price R (1995) Prediction of thoracic and lumbar vertebral body compressive strength. Correlations with bone mineral density and vertebral region. Bone 17:167–174

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Sran MM, Khan KM, Keiver K, Chew JB, McKay HA, Oxland TR (2005) Accuracy of DXA scanning of the thoracic spine: cadaveric studies comparing BMC, areal BMD and geometric estimates of volumetric BMD against ash weight and CT measures of bone volume. Eur Spine J 14:971–976

    PubMed  Article  Google Scholar 

  35. 35.

    Jones G, White C, Nguyen T, Sambrook PN, Kelly PJ, Eisman JA (1996) Prevalent vertebral deformities: relationship to bone mineral density and spinal osteophytosis in elderly men and women. Osteoporos Int 6:233–239

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Briggs AM (2006) Pathomechanics of spinal osteoporosis: Subregional bone mineral density and physiologic loading. PhD thesis, The University of Melbourne, Melbourne

  37. 37.

    Kopperdahl DL, Pearlman JL, Keaveny TM (2000) Biomechanical consequences of an isolated overload on the human vertebral body. J Orthop Res 18:685–690

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    Fields AJ, Eswaran SK, Jekir MG, Keaveny TM (2009) Role of trabecular microarchitecture in whole-vertebral body biomechanical behavior. J Bone Miner Res 24:1523–1530

    PubMed Central  PubMed  Article  Google Scholar 

  39. 39.

    Wegrzyn J, Roux JP, Arlot ME, Boutroy S, Vilayphiou N, Guyen O, Delmas PD, Chapurlat R, Bouxsein ML (2010) Role of trabecular microarchitecture and its heterogeneity parameters in the mechanical behavior of ex vivo human L3 vertebrae. J Bone Miner Res 25:2324–2331

    PubMed Central  PubMed  Article  Google Scholar 

  40. 40.

    Edmondston SJ, Singer KP, Day RE, Price RI, Breidahl PD (1997) Ex vivo estimation of thoracolumbar vertebral body compressive strength: The relative contributions of bone densitometry and vertebral morphometry. Osteoporos Int 7:142–148

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    Myers BS, Arbogast KB, Lobaugh B, Harper KD, Richardson WJ, Drezner MK (1994) Improved assessment of lumbar vertebral body strength using supine lateral dual-energy X-ray absorptiometry. J Bone Miner Res 9:687–693

    CAS  PubMed  Article  Google Scholar 

  42. 42.

    Pollintine P, Dolan P, Tobias JH, Adams MA (2004) Intervertebral disc degeneration can lead to “stress-shielding” of the anterior vertebral body: a cause of osteoporotic vertebral fracture? Spine 29:774–782

    PubMed  Article  Google Scholar 

  43. 43.

    Fields AJ, Nawathe S, Eswaran SK, Jekir MG, Adams MF, Papadopoulos P, Keaveny TM (2012) Vertebral fragility and structural redundancy. J Bone Miner Res 27:2152–2158

    PubMed Central  PubMed  Article  Google Scholar 

  44. 44.

    Eswaran S, Gupta A, Adams MF, Keaveny TM (2006) Cortical and trabecular load sharing in the human vertebral body. J Bone Miner Res 21:307–314

    PubMed  Article  Google Scholar 

  45. 45.

    Homminga J, Weinans H, Gowin W, Felsenberg D, Huiskes R (2001) Osteoporosis changes the amount of vertebral trabecular bone at risk of fracture but not the vertebral load distribution. Spine 24:1555–1561

    Article  Google Scholar 

  46. 46.

    Briggs AM, Wrigley TV, Dieen JHV, Phillips B, Lo SK, Greig AM, Bennell KL (2006) The effect of osteoporotic vertebral fracture on predicted spinal loads in vivo. Eur Spine J 15:1785–1795

    PubMed  Article  Google Scholar 

  47. 47.

    Henry MJ, Pasco JA, Pocock NA, Nicholson GC, Kotowicz MA (2004) Reference ranges for bone densitometers adopted Australia-wide: Geelong osteoporosis study. Australas Radiol 48:473–475

    CAS  PubMed  Article  Google Scholar 

  48. 48.

    Genant HK, Grampp S, Gluer CC, Faulkner KG, Jergas M, Engelke K, Hagiwara S, Van Kuijk C (1994) Universal standardization for dual X-ray absorptiometry: patient and phantom cross-calibration results. J Bone Miner Res 9:1503–1514

    CAS  PubMed  Article  Google Scholar 

  49. 49.

    Lochmuller EM, Krefting N, Burklein D, Eckstein F (2001) Effect of fixation, soft-tissues, and scan projection on bone mineral measurements with dual energy X-ray absorptiometry (DXA). Calcif Tissue Int 68:140–145

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgments

The authors respectfully acknowledge the late Susan Kantor, Senior Bone Densitometrist, who contributed substantially to data collection and analysis, and Professor Nicola (Nick) Fazzalari who contributed to earlier studies leading to this work. Dr Andrew Briggs was supported, in part, by a fellowship awarded by the Australian National Health and Medical Research Council (NHMRC). Funding for this study was provided by the NHMRC, Scoliosis Research Society (USA), and Arthritis Australia. In-kind support was provided by the Bone Densitometry Unit (University of Melbourne Department of Medicine, Royal Melbourne Hospital), SA Pathology and the Ray Last Anatomy Laboratory, School of Medical Sciences, The University of Adelaide.

Human and Animal Rights and Informed Consent

The cadavers used in this study were donated, through informed consent, by the next-of-kin of the deceased for use in medical research under the terms and conditions contained within the Anatomy Act of South Australia. The specific terms that apply to this study are that the research be approved by the institutional research committees. Approval to use the specimens for research purposes was granted by the Human Research Ethics Committee at the Royal Adelaide Hospital, South Australia, and Curtin University, Western Australia.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Andrew M. Briggs.

Additional information

The authors declare no conflicts of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Briggs, A.M., Perilli, E., Codrington, J. et al. Subregional DXA-Derived Vertebral Bone Mineral Measures are Stronger Predictors of Failure Load in Specimens with Lower Areal Bone Mineral Density, Compared to Those with Higher Areal Bone Mineral Density. Calcif Tissue Int 95, 97–107 (2014). https://doi.org/10.1007/s00223-014-9866-3

Download citation

Keywords

  • Subregion
  • Bone mineral density
  • Failure
  • DXA
  • Vertebra