Skip to main content

Advertisement

Log in

Circulating FGF23 Levels in Response to Acute Changes in Plasma Ca2+

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

The regulation of fibroblast growth factor 23 (FGF23) synthesis and secretion is still incompletely understood. FGF23 is an important regulator of renal phosphate excretion and has regulatory effects on the calciotropic hormones calcitriol and parathyroid hormone (PTH). Calcium (Ca) and phosphate homeostasis are closely interrelated, and it is therefore likely that Ca is involved in FGF23 regulation. It has recently been reported that dietary Ca influenced FGF23 levels, with high Ca increasing FGF23. The mechanism remains to be clarified. It remains unknown whether acute changes in plasma Ca influence FGF23 levels and whether a close relationship, similar that known for Ca and PTH, exists between Ca and FGF23. Thus, the aim of the present study was to examine whether acute hypercalcemia and hypocalcemia regulate FGF23 levels in the rat. Acute hypercalcemia was induced by an intravenous Ca infusion and hypocalcemia by infusion of ethylene glycol tetraacetic acid (EGTA) in normal and acutely parathyroidectomized rats. Intact plasma FGF23 and intact plasma PTH and plasma Ca2+ and phosphate were measured. Acute hypercalcemia and hypocalcemia resulted as expected in adequate PTH secretory responses. Plasma FGF23 levels remained stable at all plasma Ca2+ levels; acute parathyroidectomy did not affect FGF23 secretion. In conclusion, Ca is not a regulator of acute changes in FGF23 secretion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Quinn SJ, Thomsen AR, Pang JL, Kantham L, Brauner-Osborne H, Pollak M, Goltzman D, Brown EM (2013) Interactions between calcium and phosphorus in the regulation of the production of fibroblast growth factor 23 in vivo. Am J Physiol Endocrinol Metab 304:E310–E320

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Brown EM, Gamba G, Riccardi D, Lombardi M, Butters R, Kifor O, Sun A, Hediger MA, Lytton J et al (1993) Cloning and characterization of an extracellular Ca(2+)-sensing receptor from bovine parathyroid. Nature 366:575–580

    Article  CAS  PubMed  Google Scholar 

  3. Brown EM (2013) Role of the calcium-sensing receptor in extracellular calcium homeostasis. Best Pract Res Clin Endocrinol Metab 27:333–343

    Article  CAS  PubMed  Google Scholar 

  4. Lewin E, Nielsen PK, Olgaard K (1995) The calcium/parathyroid hormone concept of the parathyroid glands. Curr Opin Nephrol Hypertens 4:324–333

    Article  CAS  PubMed  Google Scholar 

  5. Wang W, Lewin E, Olgaard K (2002) Rate-dependency of calcitonin secretion in response to increased plasma Ca2+. Eur J Clin Invest 32:669–673

    Article  CAS  PubMed  Google Scholar 

  6. Econs MJ, McEnery PT (1997) Autosomal dominant hypophosphatemic rickets/osteomalacia: clinical characterization of a novel renal phosphate-wasting disorder. J Clin Endocrinol Metab 82:674–681

    Article  CAS  PubMed  Google Scholar 

  7. Jonsson KB, Zahradnik R, Larsson T, White KE, Sugimoto T, Imanishi Y, Yamamoto T, Hampson G, Koshiyama H, Ljunggren O, Oba K, Yang IM, Miyauchi A, Econs MJ, Lavigne J, Juppner H (2003) Fibroblast growth factor 23 in oncogenic osteomalacia and X-linked hypophosphatemia. N Engl J Med 348:1656–1663

    Article  CAS  PubMed  Google Scholar 

  8. Mirams M, Robinson BG, Mason RS, Nelson AE (2004) Bone as a source of FGF23: regulation by phosphate? Bone 35:1192–1199

    Article  CAS  PubMed  Google Scholar 

  9. Yoshiko Y, Wang H, Minamizaki T, Ijuin C, Yamamoto R, Suemune S, Kozai K, Tanne K, Aubin JE, Maeda N (2007) Mineralized tissue cells are a principal source of FGF23. Bone 40:1565–1573

    Article  CAS  PubMed  Google Scholar 

  10. Kurosu H, Ogawa Y, Miyoshi M, Yamamoto M, Nandi A, Rosenblatt KP, Baum MG, Schiavi S, Hu MC, Moe OW, Kuro-o M (2006) Regulation of fibroblast growth factor-23 signaling by klotho. J Biol Chem 281:6120–6123

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Urakawa I, Yamazaki Y, Shimada T, Iijima K, Hasegawa H, Okawa K, Fujita T, Fukumoto S, Yamashita T (2006) Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature 444:770–774

    Article  CAS  PubMed  Google Scholar 

  12. Hu MC, Shiizaki K, Kuro-o M, Moe OW (2013) Fibroblast growth factor 23 and Klotho: physiology and pathophysiology of an endocrine network of mineral metabolism. Annu Rev Physiol 75:503–533

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Shimada T, Mizutani S, Muto T, Yoneya T, Hino R, Takeda S, Takeuchi Y, Fujita T, Fukumoto S, Yamashita T (2001) Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia. Proc Natl Acad Sci USA 98:6500–6505

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Canalejo R, Canalejo A, Martinez-Moreno JM, Rodriguez-Ortiz ME, Estepa JC, Mendoza FJ, Munoz-Castaneda JR, Shalhoub V, Almaden Y, Rodriguez M (2010) FGF23 fails to inhibit uremic parathyroid glands. J Am Soc Nephrol 21:1125–1135

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Ben Dov IZ, Galitzer H, Lavi-Moshayoff V, Goetz R, Kuro-o M, Mohammadi M, Sirkis R, Naveh-Many T, Silver J (2007) The parathyroid is a target organ for FGF23 in rats. J Clin Invest 117:4003–4008

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Huang CL (2012) Regulation of ion channels by secreted Klotho. Adv Exp Med Biol 728:100–106

    Article  CAS  PubMed  Google Scholar 

  17. Martin A, David V, Li H, Dai B, Feng JQ, Quarles LD (2012) Overexpression of the DMP1 C-terminal fragment stimulates FGF23 and exacerbates the hypophosphatemic rickets phenotype in Hyp mice. Mol Endocrinol 26:1883–1895

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Wohrle S, Henninger C, Bonny O, Thuery A, Beluch N, Hynes NE, Guagnano V, Sellers WR, Hofmann F, Kneissel M, Graus PD (2013) Pharmacological inhibition of fibroblast growth factor (FGF) receptor signaling ameliorates FGF23-mediated hypophosphatemic rickets. J Bone Miner Res 28:899–911

    Article  PubMed  Google Scholar 

  19. Barthel TK, Mathern DR, Whitfield GK, Haussler CA, Hopper HA, Hsieh JC, Slater SA, Hsieh G, Kaczmarska M, Jurutka PW, Kolek OI, Ghishan FK, Haussler MR (2007) 1,25-Dihydroxyvitamin D3/VDR-mediated induction of FGF23 as well as transcriptional control of other bone anabolic and catabolic genes that orchestrate the regulation of phosphate and calcium mineral metabolism. J Steroid Biochem Mol Biol 103:381–388

    Article  CAS  PubMed  Google Scholar 

  20. Yu X, Sabbagh Y, Davis SI, Demay MB, White KE (2005) Genetic dissection of phosphate- and vitamin D—mediated regulation of circulating Fgf23 concentrations. Bone 36:971–977

    Article  CAS  PubMed  Google Scholar 

  21. Saji F, Shigematsu T, Sakaguchi T, Ohya M, Orita H, Maeda Y, Ooura M, Mima T, Negi S (2010) Fibroblast growth factor 23 production in bone is directly regulated by 1{alpha},25-dihydroxyvitamin D, but not PTH. Am J Physiol Renal Physiol 299:F1212–F1217

    Article  CAS  PubMed  Google Scholar 

  22. Haussler MR, Whitfield GK, Kaneko I, Forster R, Saini R, Hsieh JC, Haussler CA, Jurutka PW (2012) The role of vitamin D in the FGF23, klotho, and phosphate bone-kidney endocrine axis. Rev Endocr Metab Disord 13:57–69

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Lopez I, Rodriguez-Ortiz ME, Almaden Y, Guerrero F, de Oca AM, Pineda C, Shalhoub V, Rodriguez M, Aguilera-Tejero E (2011) Direct and indirect effects of parathyroid hormone on circulating levels of fibroblast growth factor 23 in vivo. Kidney Int 80:475–482

    Article  CAS  PubMed  Google Scholar 

  24. Lavi-Moshayoff V, Wasserman G, Meir T, Silver J, Naveh-Many T (2010) PTH increases FGF23 gene expression and mediates the high-FGF23 levels of experimental kidney failure: a bone parathyroid feedback loop. Am J Physiol Renal Physiol 299:F882–F889

    Article  CAS  PubMed  Google Scholar 

  25. Larsson T, Nisbeth U, Ljunggren O, Juppner H, Jonsson KB (2003) Circulating concentration of FGF-23 increases as renal function declines in patients with chronic kidney disease, but does not change in response to variation in phosphate intake in healthy volunteers. Kidney Int 64:2272–2279

    Article  CAS  PubMed  Google Scholar 

  26. Antoniucci DM, Yamashita T, Portale AA (2006) Dietary phosphorus regulates serum fibroblast growth factor-23 concentrations in healthy men. J Clin Endocrinol Metab 91:3144–3149

    Article  CAS  PubMed  Google Scholar 

  27. Ferrari SL, Bonjour JP, Rizzoli R (2005) Fibroblast growth factor-23 relationship to dietary phosphate and renal phosphate handling in healthy young men. J Clin Endocrinol Metab 90:1519–1524

    Article  CAS  PubMed  Google Scholar 

  28. Ito N, Fukumoto S, Takeuchi Y, Takeda S, Suzuki H, Yamashita T, Fujita T (2007) Effect of acute changes of serum phosphate on fibroblast growth factor (FGF)23 levels in humans. J Bone Miner Metab 25:419–422

    Article  CAS  PubMed  Google Scholar 

  29. Arai-Nunota N, Mizobuchi M, Ogata H, Yamazaki-Nakazawa A, Kumata C, Kondo F, Hosaka N, Koiwa F, Kinugasa E, Shibata T, Akizawa T (2014) Intravenous phosphate loading increases fibroblast growth factor 23 in uremic rats. PLoS One 9:e91096

    Article  PubMed Central  PubMed  Google Scholar 

  30. Shimada T, Yamazaki Y, Takahashi M, Hasegawa H, Urakawa I, Oshima T, Ono K, Kakitani M, Tomizuka K, Fujita T, Fukumoto S, Yamashita T (2005) Vitamin D receptor independent FGF23 actions in regulating phosphate and vitamin D metabolism. Am J Physiol Renal Physiol 289:F1088–F1095

    Article  CAS  PubMed  Google Scholar 

  31. Rodriguez-Ortiz ME, Lopez I, Munoz-Castaneda JR, Martinez-Moreno JM, Ramirez AP, Pineda C, Canalejo A, Jaeger P, Aguilera-Tejero E, Rodriguez M, Felsenfeld A, Almaden Y (2012) Calcium deficiency reduces circulating levels of FGF23. J Am Soc Nephrol 23:1190–1197

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Martuseviciene G, Hofman-Bang J, Clausen T, Olgaard K, Lewin E (2011) The secretory response of parathyroid hormone to acute hypocalcemia in vivo is independent of parathyroid glandular sodium/potassium-ATPase activity. Kidney Int 79:742–748

    Article  CAS  PubMed  Google Scholar 

  33. Lewin E, Garfia B, Almaden Y, Rodriguez M, Olgaard K (2003) Autoregulation in the parathyroid glands by PTH/PTHrP receptor ligands in normal and uremic rats. Kidney Int 64:63–70

    Article  CAS  PubMed  Google Scholar 

  34. Lewin E, Wang W, Olgaard K (1997) Reversibility of experimental secondary hyperparathyroidism. Kidney Int 52:1232–1241

    Article  CAS  PubMed  Google Scholar 

  35. Lewin E, Almaden Y, Rodriguez M, Olgaard K (2000) PTHrP enhances the secretory response of PTH to a hypocalcemic stimulus in rat parathyroid glands. Kidney Int 58:71–81

    Article  CAS  PubMed  Google Scholar 

  36. Lewin E, Wang W, Olgaard K (1999) Rapid recovery of plasma ionized calcium after acute induction of hypocalcaemia in parathyroidectomized and nephrectomized rats. Nephrol Dial Transplant 14:604–609

    Article  CAS  PubMed  Google Scholar 

  37. Hofman-Bang J, Martuseviciene G, Santini MA, Olgaard K, Lewin E (2010) Increased parathyroid expression of klotho in uremic rats. Kidney Int 78:1119–1127

    Article  CAS  PubMed  Google Scholar 

  38. Huan J, Olgaard K, Nielsen LB, Lewin E (2006) Parathyroid hormone 7–84 induces hypocalcemia and inhibits the parathyroid hormone 1–84 secretory response to hypocalcemia in rats with intact parathyroid glands. J Am Soc Nephrol 17:1923–1930

    Article  CAS  PubMed  Google Scholar 

  39. Lewin E (2004) Parathyroid hormone regulation in normal and uremic rats. Reversibility of secondary hyperparathyroidism after experimental kidney transplantation. Dan Med Bull 51:184–206

    CAS  PubMed  Google Scholar 

  40. Burnett SM, Gunawardene SC, Bringhurst FR, Juppner H, Lee H, Finkelstein JS (2006) Regulation of C-terminal and intact FGF-23 by dietary phosphate in men and women. J Bone Miner Res 21:1187–1196

    Article  CAS  PubMed  Google Scholar 

  41. Gutierrez OM, Wolf M, Taylor EN (2011) Fibroblast growth factor 23, cardiovascular disease risk factors, and phosphorus intake in the health professionals follow-up study. Clin J Am Soc Nephrol 6:2871–2878

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Huan J, Martuseviciene G, Olgaard K, Lewin E (2007) Calcium-sensing receptor and recovery from hypocalcaemia in thyroparathyroidectomized rats. Eur J Clin Invest 37:214–221

    Article  CAS  PubMed  Google Scholar 

  43. Wang W, Lewin E, Olgaard K (1999) 1,25(OH)2D3 only affects long-term levels of plasma Ca2+ but not the rapid minute-to-minute plasma Ca2+ homeostasis in the rat. Steroids 64:726–734

    Article  CAS  PubMed  Google Scholar 

  44. Wang W, Lewin E, Olgaard K (1999) Parathyroid hormone is not a key hormone in the rapid minute-to-minute regulation of plasma Ca2+ homeostasis in rats. Eur J Clin Invest 29:309–320

    Article  PubMed  Google Scholar 

  45. Wang W, Lewin E, Olgaard K (2002) Role of calcitonin in the rapid minute-to-minute regulation of plasma Ca2+ homeostasis in the rat. Eur J Clin Invest 32:674–681

    Article  CAS  PubMed  Google Scholar 

  46. Liu S, Tang W, Zhou J, Stubbs JR, Luo Q, Pi M, Quarles LD (2006) Fibroblast growth factor 23 is a counter-regulatory phosphaturic hormone for vitamin D. J Am Soc Nephrol 17:1305–1315

    Article  CAS  PubMed  Google Scholar 

  47. Andrukhova O, Smorodchenko A, Egerbacher M, Streicher C, Zeitz U, Goetz R, Shalhoub V, Mohammadi M, Pohl EE, Lanske B, Erben RG (2014) FGF23 promotes renal calcium reabsorption through the TRPV5 channel. EMBO J 33:229–246

    PubMed Central  PubMed  Google Scholar 

  48. Finch JL, Tokumoto M, Nakamura H, Yao W, Shahnazari M, Lane N, Slatopolsky E (2010) Effect of paricalcitol and cinacalcet on serum phosphate, FGF-23, and bone in rats with chronic kidney disease. Am J Physiol Renal Physiol 298:F1315–F1322

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Kuczera P, Adamczak M, Wiecek A (2014) Cinacalcet treatment decreases plasma fibroblast growth factor 23 concentration in haemodialysed patients with chronic kidney disease and secondary hyperparathyroidism. Clin Endocrinol (Oxf) 80:607–612

    Article  CAS  Google Scholar 

  50. Kim HJ, Kim H, Shin N, Na KY, Kim YL, Kim D, Chang JH, Song YR, Hwang YH, Kim YS, Ahn C, Lee J, Oh KH (2013) Cinacalcet lowering of serum fibroblast growth factor-23 concentration may be independent from serum Ca, P, PTH and dose of active vitamin D in peritoneal dialysis patients: a randomized controlled study. BMC Nephrol 14:112–120

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Spichtig D, Zhang H, Mohebbi N, Pavik I, Petzold K, Stange G, Saleh L, Edenhofer I, Segerer S, Biber J, Jaeger P, Serra AL, Wagner CA (In press) Renal expression of FGF23 and peripheral resistance to elevated FGF23 in rodent models of polycystic kidney disease. Kidney Int

  52. Zanchi C, Locatelli M, Benigni A, Corna D, Tomasoni S, Rottoli D, Gaspari F, Remuzzi G, Zoja C (2013) Renal expression of FGF23 in progressive renal disease of diabetes and the effect of ace inhibitor. PLoS One 8:e70775

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the skillful help of technician Kirsten Bang. The study was partly supported by a grant from the Lundbeck Foundation (R126-A12320).

Human and Animal Rights and Informed Consent

The experimental studies were performed in accordance with the National Institute for Health’s Guide for Care and Use of Laboratory Animals and approved by the Animal Experiment Inspectorate, at the Ministry of Food, Agriculture and Fisheries, in Denmark (Reference: 2012-DY-2934-00023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ewa Lewin.

Additional information

The authors report that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gravesen, E., Mace, M.L., Hofman-Bang, J. et al. Circulating FGF23 Levels in Response to Acute Changes in Plasma Ca2+ . Calcif Tissue Int 95, 46–53 (2014). https://doi.org/10.1007/s00223-014-9861-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-014-9861-8

Keywords

Navigation