Skip to main content

Advertisement

Log in

Deficiency in Perlecan/HSPG2 During Bone Development Enhances Osteogenesis and Decreases Quality of Adult Bone in Mice

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Perlecan/HSPG2 (Pln) is a large heparan sulfate proteoglycan abundant in the extracellular matrix of cartilage and the lacunocanalicular space of adult bones. Although Pln function during cartilage development is critical, evidenced by deficiency disorders including Schwartz–Jampel Syndrome and dyssegmental dysplasia Silverman-Handmaker type, little is known about its function in development of bone shape and quality. The purpose of this study was to understand the contribution of Pln to bone geometric and mechanical properties. We used hypomorph mutant mice that secrete negligible amount of Pln into skeletal tissues and analyzed their adult bone properties using micro-computed tomography and three-point-bending tests. Bone shortening and widening in Pln mutants was observed and could be attributed to loss of growth plate organization and accelerated osteogenesis that was reflected by elevated cortical thickness at older ages. This effect was more pronounced in Pln mutant females, indicating a sex-specific effect of Pln deficiency on bone geometry. Additionally, mutant females, and to a lesser extent mutant males, increased their elastic modulus and bone mineral densities to counteract changes in bone shape, but at the expense of increased brittleness. In summary, Pln deficiency alters cartilage matrix patterning and, as we now show, coordinately influences bone formation and calcification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. French MM, Smith SE, Akanbi K, Sanford T, Hecht J, Farach-Carson MC, Carson DD (1999) Expression of the heparan sulfate proteoglycan, perlecan, during mouse embryogenesis and perlecan chondrogenic activity in vitro. J Cell Biol 145:1103–1115

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Brown AJ, Alicknavitch M, D’Souza SS, Daikoku T, Kirn-Safran CB, Marchetti D, Carson DD, Farach-Carson MC (2008) Heparanase expression and activity influences chondrogenic and osteogenic processes during endochondral bone formation. Bone 43:689–699

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Arikawa-Hirasawa E, Watanabe H, Takami H, Hassell JR, Yamada Y (1999) Perlecan is essential for cartilage and cephalic development. Nat Genet 23:354–358

    Article  CAS  PubMed  Google Scholar 

  4. Costell M, Gustafsson E, Aszodi A, Morgelin M, Bloch W, Hunziker E, Addicks K, Timpl R, Fassler R (1999) Perlecan maintains the integrity of cartilage and some basement membranes. J Cell Biol 147:1109–1122

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Stum M, Davoine CS, Vicart S, Guillot-Noel L, Topaloglu H, Carod-Artal FJ, Kayserili H, Hentati F, Merlini L, Urtizberea JA, el Hammouda H, Quan PC, Fontaine B, Nicole S (2006) Spectrum of HSPG2 (Perlecan) mutations in patients with Schwartz–Jampel syndrome. Hum Mutat 27:1082–1091

    Article  CAS  PubMed  Google Scholar 

  6. Arikawa-Hirasawa E, Wilcox WR, Le AH, Silverman N, Govindraj P, Hassell JR, Yamada Y (2001) Dyssegmental dysplasia, Silverman-Handmaker type, is caused by functional null mutations of the perlecan gene. Nat Genet 27:431–434

    Article  CAS  PubMed  Google Scholar 

  7. Farach-Carson MC, Carson DD (2007) Perlecan—a multifunctional extracellular proteoglycan scaffold. Glycobiology 17:897–905

    Article  CAS  PubMed  Google Scholar 

  8. Yang W, Gomes RR, Brown AJ, Burdett AR, Alicknavitch M, Farach-Carson MC, Carson DD (2006) Chondrogenic differentiation on perlecan domain I, collagen II, and bone morphogenetic protein-2-based matrices. Tissue Eng 12:2009–2024

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Jha AK, Yang W, Kirn-Safran CB, Farach-Carson MC, Jia X (2009) Perlecan domain I–conjugated, hyaluronic acid–based hydrogel particles for enhanced chondrogenic differentiation via BMP-2 release. Biomaterials 30:6964–6975

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Burstein AH, Zika JM, Heiple KG, Klein L (1975) Contribution of collagen and mineral to the elastic–plastic properties of bone. J Bone Joint Surg Am 57:956–961

    CAS  PubMed  Google Scholar 

  11. Oristian DS, Sloofman LG, Zhou X, Wang L, Farach-Carson MC, Kirn-Safran CB (2009) Ribosomal protein L29/HIP deficiency delays osteogenesis and increases fragility of adult bone in mice. J Orthop Res 27:28–35

    Article  PubMed Central  PubMed  Google Scholar 

  12. Ling Y, Rios HF, Myers ER, Lu Y, Feng JQ, Boskey AL (2005) DMP1 depletion decreases bone mineralization in vivo: an FTIR imaging analysis. J Bone Miner Res 20:2169–2177

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Wallace JM, Rajachar RM, Chen XD, Shi S, Allen MR, Bloomfield SA, Les CM, Robey PG, Young MF, Kohn DH (2006) The mechanical phenotype of biglycan-deficient mice is bone- and gender-specific. Bone 39:106–116

    Article  CAS  PubMed  Google Scholar 

  14. Boskey AL, Spevak L, Paschalis E, Doty SB, McKee MD (2002) Osteopontin deficiency increases mineral content and mineral crystallinity in mouse bone. Calcif Tissue Int 71:145–154

    Article  CAS  PubMed  Google Scholar 

  15. Boskey AL, Spevak L, Doty SB, Rosenberg L (1997) Effects of bone CS-proteoglycans, DS-decorin, and DS-biglycan on hydroxyapatite formation in a gelatin gel. Calcif Tissue Int 61:298–305

    Article  CAS  PubMed  Google Scholar 

  16. Miller E, Delos D, Baldini T, Wright TM, Pleshko Camacho N (2007) Abnormal mineral–matrix interactions are a significant contributor to fragility in oim/oim bone. Calcif Tissue Int 81:206–214

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Thompson WR, Modla S, Grindel BJ, Czymmek KJ, Kirn-Safran CB, Wang L, Duncan RL, Farach-Carson MC (2011) Perlecan/Hspg2 deficiency alters the pericellular space of the lacuno-canalicular system surrounding osteocytic processes in cortical bone. J Bone Miner Res 26:618–629

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Wang B, Lai X, Price C, Thompson WR, Li W, Quabili TR, Tseng WJ, Liu XS, Zhang H, Pan J, Kirn-Safran CB, Farach-Carson MC, Wang L (2014) Perlecan-containing pericellular matrix regulates solute transport and mechanosensing within the osteocyte lacunar–canalicular system. J Bone Miner Res 29:878–891

    Article  CAS  PubMed  Google Scholar 

  19. Rodgers KD, Sasaki T, Aszodi A, Jacenko O (2007) Reduced perlecan in mice results in chondrodysplasia resembling Schwartz–Jampel syndrome. Hum Mol Genet 16:515–528

    Article  CAS  PubMed  Google Scholar 

  20. Kirn-Safran CB, Oristian DS, Focht RJ, Parker SG, Vivian JL, Carson DD (2007) Global growth deficiencies in mice lacking the ribosomal protein HIP/RPL29. Dev Dyn 236:447–460

    Article  CAS  PubMed  Google Scholar 

  21. Miller SA, Brown AJ, Farach-Carson MC, Kirn-Safran CB (2003) HIP/RPL29 down-regulation accompanies terminal chondrocyte differentiation. Differentiation 71:322–336

    Article  CAS  PubMed  Google Scholar 

  22. Schriefer JL, Robling AG, Warden SJ, Fournier AJ, Mason JJ, Turner CH (2005) A comparison of mechanical properties derived from multiple skeletal sites in mice. J Biomech 38:467–475

    Article  PubMed  Google Scholar 

  23. Bi Y, Stuelten CH, Kilts T, Wadhwa S, Iozzo RV, Robey PG, Chen XD, Young MF (2005) Extracellular matrix proteoglycans control the fate of bone marrow stromal cells. J Biol Chem 280:30481–30489

    Article  CAS  PubMed  Google Scholar 

  24. Chen CC, Boskey AL (1985) Mechanisms of proteoglycan inhibition of hydroxyapatite growth. Calcif Tissue Int 37:395–400

    Article  CAS  PubMed  Google Scholar 

  25. Rees SG, Shellis RP, Embery G (2002) Inhibition of hydroxyapatite crystal growth by bone proteoglycans and proteoglycan components. Biochem Biophys Res Commun 292:727–733

    Article  CAS  PubMed  Google Scholar 

  26. Shibata M, Shigematsu T, Hatamura I, Saji F, Mune S, Kunimoto K, Hanba Y, Shiizaki K, Sakaguchi T, Negi S (2010) Reduced expression of perlecan in the aorta of secondary hyperparathyroidism model rats with medial calcification. Ren Fail 32:214–223

    Article  CAS  PubMed  Google Scholar 

  27. Zhou HY (2007) Proteomic analysis of hydroxyapatite interaction proteins in bone. Ann N Y Acad Sci 1116:323–326

    Article  CAS  PubMed  Google Scholar 

  28. Stum M, Girard E, Bangratz M, Bernard V, Herbin M, Vignaud A, Ferry A, Davoine CS, Echaniz-Laguna A, Rene F, Marcel C, Molgo J, Fontaine B, Krejci E, Nicole S (2008) Evidence of a dosage effect and a physiological endplate acetylcholinesterase deficiency in the first mouse models mimicking Schwartz–Jampel syndrome neuromyotonia. Hum Mol Genet 17:3166–3179

    Article  CAS  PubMed  Google Scholar 

  29. Wallace JM, Rajachar RM, Allen MR, Bloomfield SA, Robey PG, Young MF, Kohn DH (2007) Exercise-induced changes in the cortical bone of growing mice are bone- and gender-specific. Bone 40:1120–1127

    Article  PubMed Central  PubMed  Google Scholar 

  30. Price C, Herman BC, Lufkin T, Goldman HM, Jepsen KJ (2005) Genetic variation in bone growth patterns defines adult mouse bone fragility. J Bone Miner Res 20:1983–1991

    Article  CAS  PubMed  Google Scholar 

  31. Jepsen KJ, Pennington DE, Lee YL, Warman M, Nadeau J (2001) Bone brittleness varies with genetic background in A/J and C57BL/6J inbred mice. J Bone Miner Res 16:1854–1862

    Article  CAS  PubMed  Google Scholar 

  32. Maloul A, Rossmeier K, Mikic B, Pogue V, Battaglia T (2006) Geometric and material contributions to whole bone structural behavior in GDF-7-deficient mice. Connect Tissue Res 47:157–162

    Article  CAS  PubMed  Google Scholar 

  33. Wiren KM, Zhang XW, Toombs AR, Kasparcova V, Gentile MA, Harada S, Jepsen KJ (2004) Targeted overexpression of androgen receptor in osteoblasts: unexpected complex bone phenotype in growing animals. Endocrinology 145:3507–3522

    Article  CAS  PubMed  Google Scholar 

  34. Sims NA, Dupont S, Krust A, Clement-Lacroix P, Minet D, Resche-Rigon M, Gaillard-Kelly M, Baron R (2002) Deletion of estrogen receptors reveals a regulatory role for estrogen receptors-beta in bone remodeling in females but not in males. Bone 30:18–25

    Article  CAS  PubMed  Google Scholar 

  35. Oh JH, Kim YK, Jung JY, Shin JE, Chung JH (2011) Changes in glycosaminoglycans and related proteoglycans in intrinsically aged human skin in vivo. Exp Dermatol 20:454–456

    Article  PubMed  Google Scholar 

  36. Smith SE, French MM, Julian J, Paria BC, Dey SK, Carson DD (1997) Expression of heparan sulfate proteoglycan (perlecan) in the mouse blastocyst is regulated during normal and delayed implantation. Dev Biol 184:38–47

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Center for Research Resources (NCRR) and the National Institute of General Medical Sciences (NIGMS) of the NIH through P20-RR016458 (to C.B.K.S., M.C.F.C., and L.W), ARRA supplement (to C.B.K.S.), and NIH R01 AR054385 (to L.W.). The C1532Yneo mutant mice were provided by Dr. K. D. Rodgers. We thank Dr. W. R. Thompson for fruitful comments on Pln function in bone matrix.

Human and Animal Rights and Informed Consent

All animal experiments were performed in accordance with University of Delaware Institutional Animal Care and Use Committee (IACUC)-approved protocols.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine B. Kirn-Safran.

Additional information

The authors report that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lowe, D.A., Lepori-Bui, N., Fomin, P.V. et al. Deficiency in Perlecan/HSPG2 During Bone Development Enhances Osteogenesis and Decreases Quality of Adult Bone in Mice. Calcif Tissue Int 95, 29–38 (2014). https://doi.org/10.1007/s00223-014-9859-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-014-9859-2

Keywords

Navigation