Calcified Tissue International

, Volume 94, Issue 6, pp 569–579 | Cite as

Physiological Effects of Microgravity on Bone Cells

  • Yasir Arfat
  • Wei-Zhong Xiao
  • Salman Iftikhar
  • Fan Zhao
  • Di-Jie Li
  • Yu-Long Sun
  • Ge Zhang
  • Peng Shang
  • Ai-Rong Qian
Original Research


Life on Earth developed under the influence of normal gravity (1g). With evidence from previous studies, scientists have suggested that normal physiological processes, such as the functional integrity of muscles and bone mass, can be affected by microgravity during spaceflight. During the life span, bone not only develops as a structure designed specifically for mechanical tasks but also adapts for efficiency. The lack of weight-bearing forces makes microgravity an ideal physical stimulus to evaluate bone cell responses. One of the most serious problems induced by long-term weightlessness is bone mineral loss. Results from in vitro studies that entailed the use of bone cells in spaceflights showed modification in cell attachment structures and cytoskeletal reorganization, which may be involved in bone loss. Humans exposed to microgravity conditions experience various physiological changes, including loss of bone mass, muscle deterioration, and immunodeficiency. In vitro models can be used to extract valuable information about changes in mechanical stress to ultimately identify the different pathways of mechanotransduction in bone cells. Despite many in vivo and in vitro studies under both real microgravity and simulated conditions, the mechanism of bone loss is still not well defined. The objective of this review is to summarize the recent research on bone cells under microgravity conditions based on advances in the field.


Bone cell Microgravity Simulated microgravity Physiological effect Bone loss Mechanotransduction 


  1. 1.
    Smith SM, Heer M (2002) Calcium and bone metabolism during space flight. Nutrition 18:849–852PubMedCrossRefGoogle Scholar
  2. 2.
    Crucian BE, Stowe RP, Pierson DL, Sams CF (2008) Immune system dysregulation following short- vs long-duration spaceflight. Aviat Space Environ Med 79:835–843PubMedCrossRefGoogle Scholar
  3. 3.
    LeBlanc A, Schneider V, Shackelford L, West S, Oganov V, Bakulin A, Voronin L (2000) Bone mineral and lean tissue loss after long duration space flight. J Musculoskelet Neuronal Interact 1:157–160PubMedGoogle Scholar
  4. 4.
    McCarthy ID (2005) Fluid shifts due to microgravity and their effects on bone: a review of current knowledge. Ann Biomed Eng 33:95–103PubMedCrossRefGoogle Scholar
  5. 5.
    Di SM, Qian AR, Qu LN, Zhang W, Wang Z, Ding C, Li YH, Ren HG, Shang P (2011) Graviresponses of osteocytes under altered gravity. Adv Space Res 48:1161–1166CrossRefGoogle Scholar
  6. 6.
    Hammond TG, Hammond JM (2001) Optimized suspension culture: the rotating-wall vessel. Am J Physiol Renal Physiol 281:F12–F25PubMedGoogle Scholar
  7. 7.
    Qian A, Yin D, Yang P, Jia B, Zhang W, Shang P (2009) Development of a ground-based simulated experimental platform for gravitational biology. IEEE Trans Appl Supercond 19:42–46CrossRefGoogle Scholar
  8. 8.
    van Loon JJWA (2007) Some history and use of the random positioning machine, RPM, in gravity related research. Adv Space Res 39:1161–1165CrossRefGoogle Scholar
  9. 9.
    Hughes-Fulford M (2003) Function of the cytoskeleton in gravisensing during spaceflight. Adv Space Res 32:1585–1593PubMedCrossRefGoogle Scholar
  10. 10.
    Sibonga JD, Cavanagh PR, Lang TF, LeBlanc AD, Schneider VS, Shackelford LC, Smith SM, Vico L (2007) Adaptation of the skeletal system during long-duration spaceflight. Clin Rev Bone Miner Metab 5:249–261CrossRefGoogle Scholar
  11. 11.
    LeBlanc AD, Spector ER, Evans HJ, Sibonga JD (2007) Skeletal responses to space flight and the bed rest analog: a review. J Musculoskelet Neuronal Interact 7:33–47PubMedGoogle Scholar
  12. 12.
    Trappe S, Costill D, Gallagher P, Creer A, Peters JR, Evans H, Riley DA, Fitts RH (2009) Exercise in space: human skeletal muscle after 6 months aboard the International Space Station. J Appl Physiol 106:1159–1168PubMedCrossRefGoogle Scholar
  13. 13.
    Swift JM, Nilsson MI, Hogan HA, Sumner LR, Bloomfield SA (2010) Simulated resistance training during hindlimb unloading abolishes disuse bone loss and maintains muscle strength. J Bone Miner Res 25:564–574PubMedCrossRefGoogle Scholar
  14. 14.
    Smith SM, Heer MA, Shackelford LC, Sibonga JD, Ploutz-Snyder L, Zwart SR (2012) Benefits for bone from resistance exercise and nutrition in long-duration spaceflight: evidence from biochemistry and densitometry. J Bone Miner Res 27:1896–1906PubMedCrossRefGoogle Scholar
  15. 15.
    Carmeliet G, Nys G, Bouillon R (1997) Microgravity reduces the differentiation of human osteoblastic MG-63 cells. J Bone Miner Res 12:786–794PubMedCrossRefGoogle Scholar
  16. 16.
    Guevorkian K, Valles JM Jr (2006) Swimming paramecium in magnetically simulated enhanced, reduced, and inverted gravity environments. Proc Natl Acad Sci USA 103:13051–13056PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Beaugnon E, Tournier R (1991) Levitation of organic materials. Nature 349:470CrossRefGoogle Scholar
  18. 18.
    Qian A, Zhang W, Weng Y, Tian Z, Di S, Yang P, Yin D, Hu L, Wang Z, Xu H (2008) Gravitational environment produced by a superconducting magnet affects osteoblast morphology and functions. Acta Astronaut 63:929–946CrossRefGoogle Scholar
  19. 19.
    Denegre JM, Valles JM Jr, Lin K, Jordan WB, Mowry KL (1998) Cleavage planes in frog eggs are altered by strong magnetic fields. Proc Natl Acad Sci USA 95:14729–14732PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Meng R, Xu HY, Di SM, Shi DY, Qian AR, Wang JF, Shang P (2011) Human mesenchymal stem cells are sensitive to abnormal gravity and exhibit classic apoptotic features. Acta Biochim Biophys Sin 43:133–142PubMedCrossRefGoogle Scholar
  21. 21.
    Qian A, Wang L, Gao X, Zhang W, Hu L, Han J, Li J, Di S, Shang P (2012) Diamagnetic levitation causes changes in the morphology, cytoskeleton, and focal adhesion proteins expression in osteocytes. IEEE Trans Biomed Eng 59:68–77PubMedCrossRefGoogle Scholar
  22. 22.
    Calloni R, Viegas GS, Turck P, Bonatto D, Pegas Henriques JA (2014) Mesenchymal stromal cells from unconventional model organisms. Cytotherapy 16:3–16PubMedCrossRefGoogle Scholar
  23. 23.
    Manske SL, Boyd SK, Zernicke RF (2010) Muscle and bone follow similar temporal patterns of recovery from muscle-induced disuse due to botulinum toxin injection. Bone 46:24–31PubMedCrossRefGoogle Scholar
  24. 24.
    Xiong J, O’Brien CA (2012) Osteocyte RANKL: new insights into the control of bone remodeling. J Bone Miner Res 27:499–505PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    van Bezooijen RL, Roelen BA, Visser A, van der Wee-Pals L, de Wilt E, Karperien M, Hamersma H, Papapoulos SE, ten Dijke P, Lowik CW (2004) Sclerostin is an osteocyte-expressed negative regulator of bone formation, but not a classical BMP antagonist. J Exp Med 199:805–814PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147PubMedCrossRefGoogle Scholar
  27. 27.
    Khayat G, Rosenzweig DH, Quinn TM (2012) Low frequency mechanical stimulation inhibits adipogenic differentiation of C3H10T1/2 mesenchymal stem cells. Differentiation 83:179–184PubMedCrossRefGoogle Scholar
  28. 28.
    Yuge L, Sasaki A, Kawahara Y, Wu SL, Matsumoto M, Manabe T, Kajiume T, Takeda M, Magaki T, Takahashi T, Kurisu K (2011) Simulated microgravity maintains the undifferentiated state and enhances the neural repair potential of bone marrow stromal cells. Stem Cells Dev 20:893–900PubMedCrossRefGoogle Scholar
  29. 29.
    Ozcivici E, Luu YK, Adler B, Qin YX, Rubin J, Judex S, Rubin CT (2010) Mechanical signals as anabolic agents in bone. Nat Rev Rheumatol 6:50–59PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Dang ZC, Lowik CW (2005) Removal of serum factors by charcoal treatment promotes adipogenesis via a MAPK-dependent pathway. Mol Cell Biochem 268:159–167PubMedCrossRefGoogle Scholar
  31. 31.
    Feve B (2005) Adipogenesis: cellular and molecular aspects. Best practice & research. Clin Endocrinol Metab 19:483–499Google Scholar
  32. 32.
    Buravkova LB, Romanov YA, Konstantinova NA, Buravkov SV, Gershovich YG, Grivennikov IA (2008) Cultured stem cells are sensitive to gravity changes. Acta Astronaut 63:603–608CrossRefGoogle Scholar
  33. 33.
    Ndozangue-Touriguine O, Hamelin J, Breard J (2008) Cytoskeleton and apoptosis. Biochem Pharmacol 76:11–18PubMedCrossRefGoogle Scholar
  34. 34.
    Huang Y, Dai ZQ, Ling SK, Zhang HY, Wan YM, Li YH (2009) Gravity, a regulation factor in the differentiation of rat bone marrow mesenchymal stem cells. J Biomed Sci 16:87PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Zayzafoon M, Gathings WE, McDonald JM (2004) Modeled microgravity inhibits osteogenic differentiation of human mesenchymal stem cells and increases adipogenesis. Endocrinology 145:2421–2432PubMedCrossRefGoogle Scholar
  36. 36.
    Yang RS, Lin WL, Chen YZ, Tang CH, Huang TH, Lu BY, Fu WM (2005) Regulation by ultrasound treatment on the integrin expression and differentiation of osteoblasts. Bone 36:276–283PubMedCrossRefGoogle Scholar
  37. 37.
    Hsu HC, Fong YC, Chang CS, Hsu CJ, Hsu SF, Lin JG, Fu WM, Yang RS, Tang CH (2007) Ultrasound induces cyclooxygenase-2 expression through integrin, integrin-linked kinase, Akt, NF-kappaB and p300 pathway in human chondrocytes. Cell Signal 19:2317–2328PubMedCrossRefGoogle Scholar
  38. 38.
    Caillot-Augusseau A, Lafage-Proust MH, Soler C, Pernod J, Dubois F, Alexandre C (1998) Bone formation and resorption biological markers in cosmonauts during and after a 180-day space flight (Euromir 95). Clin Chem 44:578–585PubMedGoogle Scholar
  39. 39.
    Pan Z, Yang J, Guo C, Shi D, Shen D, Zheng Q, Chen R, Xu Y, Xi Y, Wang J (2008) Effects of hindlimb unloading on ex vivo growth and osteogenic/adipogenic potentials of bone marrow-derived mesenchymal stem cells in rats. Stem Cells Dev 17:795–804PubMedCrossRefGoogle Scholar
  40. 40.
    Dai Z, Wu F, Chen J, Xu H, Wang H, Guo F, Tan Y, Ding B, Wang J, Wan Y (2013) Actin microfilament mediates osteoblast Cbfa1 responsiveness to BMP2 under simulated microgravity. PLoS ONE 8:e63661PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Kumei Y, Shimokawa H, Ohya K, Katano H, Akiyama H, Hirano M, Morita S (2007) Small GTPase Ras and Rho expression in rat osteoblasts during spaceflight. Ann N Y Acad Sci 1095:292–299PubMedCrossRefGoogle Scholar
  42. 42.
    Nabavi N, Khandani A, Camirand A, Harrison RE (2011) Effects of microgravity on osteoclast bone resorption and osteoblast cytoskeletal organization and adhesion. Bone 49:965–974PubMedCrossRefGoogle Scholar
  43. 43.
    Guignandon A, Akhouayri O, Laroche N, Lafage-Proust MH, Alexandre C, Vico L (2003) Focal contacts organization in osteoblastic cells under microgravity and cyclic deformation conditions. Adv Space Res 32:1561–1567PubMedCrossRefGoogle Scholar
  44. 44.
    Qian A, Li D, Han J, Gao X, Di S, Zhang W, Hu L, Shang P (2012) Fractal dimension as a measure of altered actin cytoskeleton in MC3T3-E1 cells under simulated microgravity using 3-D/2-D clinostats. IEEE Trans Biomed Eng 59:1374–1380PubMedCrossRefGoogle Scholar
  45. 45.
    Guignandon A, Lafage-Proust MH, Usson Y, Laroche N, Caillot-Augusseau A, Alexandre C, Vico L (2001) Cell cycling determines integrin-mediated adhesion in osteoblastic ROS 17/2.8 cells exposed to space-related conditions. FASEB J 15:2036–2038PubMedGoogle Scholar
  46. 46.
    Starr DA (2007) Communication between the cytoskeleton and the nuclear envelope to position the nucleus. Mol BioSyst 3:583–589PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Qian A, Yang P, Hu L, Zhang W, Di S, Wang Z, Han J, Gao X, Shang P (2010) High magnetic gradient environment causes alterations of cytoskeleton and cytoskeleton-associated genes in human osteoblasts cultured in vitro. Adv Space Res 46:687–700CrossRefGoogle Scholar
  48. 48.
    Glade N, Beaugnon E, Tabony J (2006) Ground-based methods reproduce space-flight experiments and show that weak vibrations trigger microtubule self-organisation. Biophys Chem 121:1–6PubMedCrossRefGoogle Scholar
  49. 49.
    Kumei Y, Morita S, Katano H, Akiyama H, Hirano M, Ki Oyha, Shimokawa H (2006) Microgravity signal ensnarls cell adhesion, cytoskeleton, and matrix proteins of rat osteoblasts. Ann N Y Acad Sci 1090:311–317PubMedCrossRefGoogle Scholar
  50. 50.
    Dai Z, Li Y, Ding B, Zhang X, Tan Y, Wan Y (2006) Actin microfilaments participate in the regulation of the COL1A1 promoter activity in ROS17/2.8 cells under simulated microgravity. Adv Space Res 38:1159–1167CrossRefGoogle Scholar
  51. 51.
    Higashibata A, Imamizo-Sato M, Seki M, Yamazaki T, Ishioka N (2006) Influence of simulated microgravity on the activation of the small GTPase Rho involved in cytoskeletal formation—molecular cloning and sequencing of bovine leukemia-associated guanine nucleotide exchange factor. BMC Biochem 7:19PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Valentijn A, Zouq N, Gilmore A (2004) Anoikis. Biochem Soc Trans 32:421–425PubMedCrossRefGoogle Scholar
  53. 53.
    Grossmann J, Walther K, Artinger M, Kiessling S, Scholmerich J (2001) Apoptotic signaling during initiation of detachment-induced apoptosis (“anoikis”) of primary human intestinal epithelial cells. Cell Growth Differ 12:147–155PubMedGoogle Scholar
  54. 54.
    Qian A-R, Gao X, Zhang W, Li J-B, Wang Y, Di S-M, Hu L-F, Shang P (2013) Large gradient high magnetic fields affect osteoblast ultrastructure and function by disrupting collagen I or fibronectin/αβ1 integrin. PLoS ONE 8:e51036PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Papachroni KK, Karatzas DN, Papavassiliou KA, Basdra EK, Papavassiliou AG (2009) Mechanotransduction in osteoblast regulation and bone disease. Trends Mol Med 15:208–216PubMedCrossRefGoogle Scholar
  56. 56.
    Smith SM, Wastney ME, O’Brien KO, Morukov BV, Larina IM, Abrams SA, Davis-Street JE, Oganov V, Shackelford LC (2005) Bone markers, calcium metabolism, and calcium kinetics during extended-duration space flight on the Mir space station. J Bone Miner Res 20:208–218PubMedCrossRefGoogle Scholar
  57. 57.
    Carmeliet G, Nys G, Bouillon R (1997) Microgravity reduces the differentiation of human osteoblastic MG-63 cells. J Bone Miner Res 12:786–794PubMedCrossRefGoogle Scholar
  58. 58.
    Hughes-Fulford M (2002) The role of signaling pathways in osteoblast gravity perception. J Gravit Physiol 9:P257–P260PubMedGoogle Scholar
  59. 59.
    Park SJ, Gadi J, Cho KW, Kim KJ, Kim SH, Jung HS, Lim SK (2011) The forkhead transcription factor Foxc2 promotes osteoblastogenesis via up-regulation of integrin beta1 expression. Bone 49:428–438PubMedCrossRefGoogle Scholar
  60. 60.
    Liu L, Zong C, Li B, Shen D, Tang Z, Chen J, Zheng Q, Tong X, Gao C, Wang J (2014) The interaction between beta1 integrins and ERK1/2 in osteogenic differentiation of human mesenchymal stem cells under fluid shear stress modelled by a perfusion system. J Tissue Eng Regen Med 8:85–96PubMedCrossRefGoogle Scholar
  61. 61.
    Huang HY, Hu LL, Song TJ, Li X, He Q, Sun X, Li YM, Lu HJ, Yang PY, Tang QQ (2011) Involvement of cytoskeleton-associated proteins in the commitment of C3H10T1/2 pluripotent stem cells to adipocyte lineage induced by BMP2/4. Mol Cell Proteomics 10(M110):002691PubMedGoogle Scholar
  62. 62.
    Dai Z, Tan Y, Yang F, Qu L, Zhang H, Wan Y, Li Y (2011) Altered actin dynamics and functions of osteoblast-like cells in parabolic flight may involve ERK1/2. Microgravity Sci Technol 23:19–27CrossRefGoogle Scholar
  63. 63.
    Sun L, Gan B, Fan Y, Xie T, Hu Q, Zhuang F (2008) Simulated microgravity alters multipotential differentiation of rat mesenchymal stem cells in association with reduced telomerase activity. Acta Astronaut 63:968–973CrossRefGoogle Scholar
  64. 64.
    Cao X, Yang L, Wu X, Wu Y, Zhang L, Zhang L (2003) Changes of bone morphogenesis proteins and transforming growth factor-beta in hind-limb bones of 21 d tail-suspended rats (in Chinese). Space Med Med Eng (Beijing) 16:269–271Google Scholar
  65. 65.
    Wang B, Zhang S, Wu X-Y (2004) Effects of BMP-2 on the gene expression of rat osteosarcoma cells under simulated weightlessness (in Chinese). Space Med Med Eng (Beijing) 17:176–179Google Scholar
  66. 66.
    Zheng Q, Huang G, Yang J, Xu Y, Guo C, Xi Y, Pan Z, Wang J (2007) Could the effect of modeled microgravity on osteogenic differentiation of human mesenchymal stem cells be reversed by regulation of signaling pathways? Biol Chem 388:755PubMedCrossRefGoogle Scholar
  67. 67.
    Parfitt AM (1977) The cellular basis of bone turnover and bone loss: a rebuttal of the osteocytic resorption–bone flow theory. Clinical Orthop Relat Res 127:236–247Google Scholar
  68. 68.
    Bonewald LF (2011) The amazing osteocyte. J Bone Miner Res 26:229–238PubMedCentralPubMedCrossRefGoogle Scholar
  69. 69.
    Tatsumi S, Ishii K, Amizuka N, Li M, Kobayashi T, Kohno K, Ito M, Takeshita S, Ikeda K (2007) Targeted ablation of osteocytes induces osteoporosis with defective mechanotransduction. Cell Metab 5:464–475PubMedCrossRefGoogle Scholar
  70. 70.
    Temiyasathit S, Jacobs CR (2010) Osteocyte primary cilium and its role in bone mechanotransduction. Ann N Y Acad Sci 1192:422–428PubMedCentralPubMedCrossRefGoogle Scholar
  71. 71.
    Riddle RC, Donahue HJ (2009) From streaming-potentials to shear stress: 25 years of bone cell mechanotransduction. J Orthop Res 27:143–149PubMedCrossRefGoogle Scholar
  72. 72.
    Bonewald LF, Johnson ML (2008) Osteocytes, mechanosensing and Wnt signaling. Bone 42:606–615PubMedCentralPubMedCrossRefGoogle Scholar
  73. 73.
    Doty SB, Morey-Holton ER, Durnova GN, Kaplansky AS (1990) Cosmos 1887: morphology, histochemistry, and vasculature of the growing rat tibia. FASEB J 4:16–23PubMedGoogle Scholar
  74. 74.
    Rodionova NV, Polkovenko OV, Oganov VS (2004) Interactions of cells in zones of bone resorption under microgravity and hypokinesia. J Gravit Physiol 11:P147–P151PubMedGoogle Scholar
  75. 75.
    Yang X, Sun L-W, Wu X-T, Wang X-N, Fan Y-B (2013) Effect of simulated microgravity on osteocytes responding to fluid shear stress. Acta Astronaut 84:237–243CrossRefGoogle Scholar
  76. 76.
    Genetos DC, Kephart CJ, Zhang Y, Yellowley CE, Donahue HJ (2007) Oscillating fluid flow activation of gap junction hemichannels induces ATP release from MLO-Y4 osteocytes. J Cell Physiol 212:207–214PubMedCentralPubMedCrossRefGoogle Scholar
  77. 77.
    Kleinnulend J, Semeins C, Ajubi N, Nijweide P, Burger E (1995) Pulsating fluid flow increases nitric oxide (NO) synthesis by osteocytes but not periosteal fibroblasts—correlation with prostaglandin upregulation. Biochem Biophys Res Commun 217:640–648CrossRefGoogle Scholar
  78. 78.
    Lu XL, Huo B, Park M, Guo XE (2012) Calcium response in osteocytic networks under steady and oscillatory fluid flow. Bone 51:466–473PubMedCentralPubMedCrossRefGoogle Scholar
  79. 79.
    Cherian PP, Siller-Jackson AJ, Gu S, Wang X, Bonewald LF, Sprague E, Jiang JX (2005) Mechanical strain opens connexin 43 hemichannels in osteocytes: a novel mechanism for the release of prostaglandin. Mol Biol Cell 16:3100–3106PubMedCentralPubMedCrossRefGoogle Scholar
  80. 80.
    Kennedy OD, Herman BC, Laudier DM, Majeska RJ, Sun HB, Schaffler MB (2012) Activation of resorption in fatigue-loaded bone involves both apoptosis and active pro-osteoclastogenic signaling by distinct osteocyte populations. Bone 50:1115–1122PubMedCentralPubMedCrossRefGoogle Scholar
  81. 81.
    Lin C, Jiang X, Dai Z, Guo X, Weng T, Wang J, Li Y, Feng G, Gao X, He L (2009) Sclerostin mediates bone response to mechanical unloading through antagonizing Wnt/β-catenin signaling. J Bone Miner Res 24:1651–1661PubMedCrossRefGoogle Scholar
  82. 82.
    Li X, Zhang Y, Kang H, Liu W, Liu P, Zhang J, Harris SE, Wu D (2005) Sclerostin binds to LRP5/6 and antagonizes canonical Wnt signaling. J Biol Chem 280:19883–19887PubMedCrossRefGoogle Scholar
  83. 83.
    Blaber EA, Dvorochkin N, Lee C, Alwood JS, Yousuf R, Pianetta P, Globus RK, Burns BP, Almeida EA (2013) Microgravity induces pelvic bone loss through osteoclastic activity, osteocytic osteolysis, and osteoblastic cell cycle inhibition by CDKN1a/p21. PLoS ONE 8:e61372PubMedCentralPubMedCrossRefGoogle Scholar
  84. 84.
    Tan SD, Bakker AD, Semeins CM, Kuijpers-Jagtman AM, Klein-Nulend J (2008) Inhibition of osteocyte apoptosis by fluid flow is mediated by nitric oxide. Biochem Biophys Res Commun 369:1150–1154PubMedCrossRefGoogle Scholar
  85. 85.
    Segovia-Silvestre T, Neutzsky-Wulff AV, Sorensen MG, Christiansen C, Bollerslev J, Karsdal MA, Henriksen K (2009) Advances in osteoclast biology resulting from the study of osteopetrotic mutations. Hum Genet 124:561–577PubMedCrossRefGoogle Scholar
  86. 86.
    Everts V, de Vries TJ, Helfrich MH (2009) Osteoclast heterogeneity: lessons from osteopetrosis and inflammatory conditions. Biochim Biophys Acta 1792:757–765PubMedCrossRefGoogle Scholar
  87. 87.
    Kondo H, Yumoto K, Alwood JS, Mojarrab R, Wang A, Almeida EA, Searby ND, Limoli CL, Globus RK (2010) Oxidative stress and gamma radiation-induced cancellous bone loss with musculoskeletal disuse. J Appl Physiol 108:152–161PubMedCentralPubMedCrossRefGoogle Scholar
  88. 88.
    Tamma R, Colaianni G, Camerino C, Di Benedetto A, Greco G, Strippoli M, Vergari R, Grano A, Mancini L, Mori G, Colucci S, Grano M, Zallone A (2009) Microgravity during spaceflight directly affects in vitro osteoclastogenesis and bone resorption. FASEB J 23:2549–2554PubMedCrossRefGoogle Scholar
  89. 89.
    Di S, Tian Z, Qian A, Li J, Wu J, Wang Z, Zhang D, Yin D, Brandi ML, Shang P (2012) Large gradient high magnetic field affects FLG29.1 cells differentiation to form osteoclast-like cells. Int J Radiat Biol 88:806–813PubMedCrossRefGoogle Scholar
  90. 90.
    Willey JS, Livingston EW, Robbins ME, Bourland JD, Tirado-Lee L, Smith-Sielicki H, Bateman TA (2010) Risedronate prevents early radiation-induced osteoporosis in mice at multiple skeletal locations. Bone 46:101–111PubMedCentralPubMedCrossRefGoogle Scholar
  91. 91.
    Sambandam Y, Blanchard JJ, Daughtridge G, Kolb RJ, Shanmugarajan S, Pandruvada SN, Bateman TA, Reddy SV (2010) Microarray profile of gene expression during osteoclast differentiation in modelled microgravity. J Cell Biochem 111:1179–1187PubMedCrossRefGoogle Scholar
  92. 92.
    Shuang F, Sun Y, Yang HH, Shao YC, Li H, Hu W, Zhong J, Zou HX (2013) Destrin deletion enhances the bone loss in hindlimb suspended mice. Eur J Appl Physiol 113:403–410PubMedCrossRefGoogle Scholar
  93. 93.
    Saxena R, Pan G, Dohm ED, McDonald JM (2011) Modeled microgravity and hindlimb unloading sensitize osteoclast precursors to RANKL-mediated osteoclastogenesis. J Bone Miner Metab 29:111–122PubMedCentralPubMedCrossRefGoogle Scholar
  94. 94.
    Rucci N, Rufo A, Alamanou M, Teti A (2007) Modeled microgravity stimulates osteoclastogenesis and bone resorption by increasing osteoblast RANKL/OPG ratio. J Cell Biochem 100:464–473PubMedCrossRefGoogle Scholar
  95. 95.
    Guignandon A, Vico L, Alexandre C, Lafage-Proust M-H (1995) Shape changes of osteoblastic cells under gravitational variations during parabolic flight—relationship with PGE2 synthesis. Cell Struct Funct 20:369–375PubMedCrossRefGoogle Scholar
  96. 96.
    Makihira S, Kawahara Y, Yuge L, Mine Y, Nikawa H (2008) Impact of the microgravity environment in a 3-dimensional clinostat on osteoblast- and osteoclast-like cells. Cell Biol Int 32:1176–1181PubMedCrossRefGoogle Scholar
  97. 97.
    Hsu H, Lacey DL, Dunstan CR, Solovyev I, Colombero A, Timms E, Tan HL, Elliott G, Kelley MJ, Sarosi I, Wang L, Xia XZ, Elliott R, Chiu L, Black T, Scully S, Capparelli C, Morony S, Shimamoto G, Bass MB, Boyle WJ (1999) Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand. Proc Natl Acad Sci USA 96:3540–3545PubMedCentralPubMedCrossRefGoogle Scholar
  98. 98.
    Lee NK, Choi YG, Baik JY, Han SY, Jeong DW, Bae YS, Kim N, Lee SY (2005) A crucial role for reactive oxygen species in RANKL-induced osteoclast differentiation. Blood 106:852–859PubMedCrossRefGoogle Scholar
  99. 99.
    Qian A, Yin D, Yang P, Lv Y, Tian Z, Shang P (2013) Application of diamagnetic levitation technology in biological sciences research. IEEE Trans Appl Supercond 23:3600305CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Yasir Arfat
    • 1
  • Wei-Zhong Xiao
    • 2
  • Salman Iftikhar
    • 3
  • Fan Zhao
    • 1
  • Di-Jie Li
    • 1
  • Yu-Long Sun
    • 1
  • Ge Zhang
    • 4
  • Peng Shang
    • 1
  • Ai-Rong Qian
    • 1
  1. 1.Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, Faculty of Life SciencesNorthwestern Polytechnical UniversityXi’anPeople’s Republic of China
  2. 2.Department of NeurologyNanhui Branch of Huashan Hospital Affiliated to Fudan UniversityShanghaiChina
  3. 3.Department of PharmacologyFMH College of Medicine and DentistryLahorePakistan
  4. 4.Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese MedicineHong Kong Baptist UniversityHong KongChina

Personalised recommendations