Abstract
The aim of this report was to summarize the clinical performance of two reference bone turnover markers (BTMs) in the prediction of fracture risk. We used an updated systematic review to examine the performance characteristics of serum procollagen type I N propeptide (s-PINP) and serum C-terminal cross-linking telopeptide of type I collagen (s-CTX) in fracture risk prediction in untreated individuals in prospective cohort studies. We excluded cross-sectional studies. Ten potentially eligible publications were identified and six included in the meta-analysis. There was a significant association between s-PINP and the risk of fracture. The hazard ratio per SD increase in s-PINP (gradient of risk [GR]) was 1.23 (95 % CI 1.09–1.39) for men and women combined unadjusted for bone mineral density. There was also a significant association between s-CTX and risk of fracture, GR = 1.18 (95 % CI 1.05–1.34) unadjusted for bone mineral density. For the outcome of hip fracture, the association between s-CTX and risk of fracture was slightly higher, 1.23 (95 % CI 1.04–1.47). Thus, there is a modest but significant association between BTMs and risk of future fractures.
Similar content being viewed by others
References
Vasikaran S, Eastell R, Bruyere O, Foldes AJ, Garnero P, Griesmacher A, McClung M, Morris HA, Silverman S, Trenti T, Wahl DA, Cooper C, Kanis JA (2011) Markers of bone turnover for the prediction of fracture risk and monitoring of osteoporosis treatment: a need for international reference standards. Osteoporos Int 22(2):391–420
Bergmann P, Body JJ, Boonen S, Boutsen Y, Devogelaer JP, Goemaere S, Kaufman JM, Reginster JY, Gangji V (2009) Evidence-based guidelines for the use of biochemical markers of bone turnover in the selection and monitoring of bisphosphonate treatment in osteoporosis: a consensus document of the Belgian Bone Club. Int J Clin Pract 63(1):19–26
Brown JP, Albert C, Nassar BA, Adachi JD, Cole D, Davison KS, Dooley KC, Don-Wauchope A, Douville P, Hanley DA, Jamal SA, Josse R, Kaiser S, Krahn J, Krause R, Kremer R, Lepage R, Letendre E, Morin S, Ooi DS, Papaioaonnou A, Ste-Marie LG (2009) Bone turnover markers in the management of postmenopausal osteoporosis. Clin Biochem 42(10–11):929–942
Szulc P, Delmas PD (2008) Biochemical markers of bone turnover: potential use in the investigation and management of postmenopausal osteoporosis. Osteoporos Int 19(12):1683–1704
Vasikaran SD (2008) Utility of biochemical markers of bone turnover and bone mineral density in management of osteoporosis. Crit Rev Clin Lab Sci 45(2):221–258
Hannon R, Eastell R (2000) Preanalytical variability of biochemical markers of bone turnover. Osteoporos Int 11(Suppl 6):S30–S44
Gerdhem P, Ivaska KK, Alatalo SL, Halleen JM, Hellman J, Isaksson A, Pettersson K, Vaananen HK, Akesson K, Obrant KJ (2004) Biochemical markers of bone metabolism and prediction of fracture in elderly women. J Bone Miner Res 19(3):386–393
Nelson HD, Morris CD, Kraemer DF, Mahon S, Carney N, Nygren PM, Helfand M (2001) Osteoporosis in postmenopausal women: diagnosis and monitoring. Evid Rep Technol Assess (Summ) 28:1–2
Civitelli R, Armamento-Villareal R, Napoli N (2009) Bone turnover markers: understanding their value in clinical trials and clinical practice. Osteoporos Int 20(6):843–851
Leeming DJ, Alexandersen P, Karsdal MA, Qvist P, Schaller S, Tanko LB (2006) An update on biomarkers of bone turnover and their utility in biomedical research and clinical practice. Eur J Clin Pharmacol 62(10):781–792
Bauer D (2001) Biochemical markers of bone turnover: the Study of Osteoporotic Fracture. In: Eastell R, Baumann M, Hoyle N, Wieczorek L (eds) Bone markers—biochemical and clinical perspectives. Martin Dunitz, London, pp 219–223
Szulc P, Montella A, Delmas PD (2008) High bone turnover is associated with accelerated bone loss but not with increased fracture risk in men aged 50 and over: the prospective MINOS study. Ann Rheum Dis 67(9):1249–1255
Yoshimura N, Muraki S, Oka H, Kawaguchi H, Nakamura K, Akune T (2011) Biochemical markers of bone turnover as predictors of osteoporosis and osteoporotic fractures in men and women: 10-year follow-up of the Taiji cohort. Mod Rheumatol 21(6):608–620
Ivaska KK, Gerdhem P, Vaananen HK, Akesson K, Obrant KJ (2010) Bone turnover markers and prediction of fracture: a prospective follow-up study of 1040 elderly women for a mean of 9 years. J Bone Miner Res 25(2):393–403
Bauer DC, Garnero P, Harrison SL, Cauley JA, Eastell R, Ensrud KE, Orwoll E (2009) Biochemical markers of bone turnover, hip bone loss, and fracture in older men: the MrOS study. J Bone Miner Res 24(12):2032–2038
Garnero P, Sornay-Rendu E, Claustrat B, Delmas PD (2000) Biochemical markers of bone turnover, endogenous hormones and the risk of fractures in postmenopausal women: the OFELY study. J Bone Miner Res 15(8):1526–1536
Meier C, Nguyen TV, Center JR, Seibel MJ, Eisman JA (2005) Bone resorption and osteoporotic fractures in elderly men: the Dubbo Osteoporosis Epidemiology Study. J Bone Miner Res 20(4):579–587
Chapurlat RD, Garnero P, Breart G, Meunier PJ, Delmas PD (2000) Serum type I collagen breakdown product (serum CTX) predicts hip fracture risk in elderly women: the EPIDOS study. Bone 27(2):283–286
Dobnig H, Piswanger-Solkner JC, Obermayer-Pietsch B, Tiran A, Strele A, Maier E, Maritschnegg P, Riedmuller G, Brueck C, Fahrleitner-Pammer A (2007) Hip and nonvertebral fracture prediction in nursing home patients: role of bone ultrasound and bone marker measurements. J Clin Endocrinol Metab 92(5):1678–1686
Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 327(7414):557–560
Marshall D, Johnell O, Wedel H (1996) Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ 312(7041):1254–1259
Johnell O, Kanis JA, Oden A, Johansson H, De Laet C, Delmas P, Eisman JA, Fujiwara S, Kroger H, Mellstrom D, Meunier PJ, Melton LJ 3rd, O’Neill T, Pols H, Reeve J, Silman A, Tenenhouse A (2005) Predictive value of BMD for hip and other fractures. J Bone Miner Res 20(7):1185–1194
Kanis JA, Oden A, Johnell O, Johansson H, De Laet C, Brown J, Burckhardt P, Cooper C, Christiansen C, Cummings S, Eisman JA, Fujiwara S, Gluer C, Goltzman D, Hans D, Krieg MA, La Croix A, McCloskey E, Mellstrom D, Melton LJ 3rd, Pols H, Reeve J, Sanders K, Schott AM, Silman A, Torgerson D, van Staa T, Watts NB, Yoshimura N (2007) The use of clinical risk factors enhances the performance of BMD in the prediction of hip and osteoporotic fractures in men and women. Osteoporos Int 18(8):1033–1046
Akesson K, Ljunghall S, Jonsson B, Sernbo I, Johnell O, Gardsell P, Obrant KJ (1995) Assessment of biochemical markers of bone metabolism in relation to the occurrence of fracture: a retrospective and prospective population-based study of women. J Bone Miner Res 10(11):1823–1829
Vergnaud P, Garnero P, Meunier PJ, Breart G, Kamihagi K, Delmas PD (1997) Undercarboxylated osteocalcin measured with a specific immunoassay predicts hip fracture in elderly women: the EPIDOS Study. J Clin Endocrinol Metab 82(3):719–724
Garnero P, Cloos P, Sornay-Rendu E, Qvist P, Delmas PD (2002) Type I collagen racemization and isomerization and the risk of fracture in postmenopausal women: the OFELY prospective study. J Bone Miner Res 17(5):826–833
Luukinen H, Kakonen SM, Pettersson K, Koski K, Laippala P, Lovgren T, Kivela SL, Vaananen HK (2000) Strong prediction of fractures among older adults by the ratio of carboxylated to total serum osteocalcin. J Bone Miner Res 15(12):2473–2478
Johansson H, Oden A, Kanis J, McCloskey E, Lorentzon M, Ljunggren O, Karlsson MK, Thorsby PM, Tivesten A, Barrett-Connor E, Ohlsson C, Mellstrom D (2012) Low serum vitamin D is associated with increased mortality in elderly men: MrOS Sweden. Osteoporos Int 23(3):991–999
Acknowledgements
H. J. was supported by an ESCEO-AMGEN Osteoporosis Fellowship Award. Amgen had no input into the analysis plan or the writing of this report.
Author information
Authors and Affiliations
Consortia
Corresponding author
Additional information
A complete list of members of the IFCC-IOF Joint Working Group on Standardisation of Biochemical Markers of Bone Turnover appears in the ‘‘Appendix’’.
The authors state that they have no conflicts of interest with regard to this manuscript.
Appendix
Appendix
Joint Working Group members: H. A. Morris (chair), C. Cooper (co-chair), S. Vasikaran, J. A. Kanis, C. Biegelmayer, E. Cavalier, E. Eriksen, A. Griesmacher, K. Makris, S. Niem, B. Ofenloch-Haehnle, H. Pham.
C. Biegelmayer (Medical School, University of Vienna, Vienna, Austria; Christian.Bieglmayer@meduniwien.ac.at); E. Cavalier ( University of Liège, CHU Sart-Tilman, Domaine du Sart-Tilman, B-4000 Liège, Belgium; etienne.cavalier@chu.ulg.ac.be); E. Eriksen (Endokrinologisk avdeling, Oslo universitetssykehus, Norway; e.f.eriksen@medisin.uio.no); A. Griesmacher (Zentralinstitut für Medizinische und Chemische Labordiagnostik, LKH-Universitätskliniken Innsbruck, 6020 Innsbruck, Austria, Andrea.Griesmacher@uki.at); K. Makris (Clinical Biochemistry Department, KAT General Hospital, 14651, Athens, Greece; kostas.makris.km@gmail.com; S. Niemi (Orion Diagnostica Oy, 90220 Oulu, Finland; seija.niemi@oriondiagnostica.fi); B. Ofenloch-Haehnle (Roche Diagnostics GmbH, 82377 Penzberg, Germany; beatus.ofenloch-haehnle@roche.com); H. Pham (Immunodiagnostic Systems (IDS), Boldon, UK; heather.pham@idsplc.com).
From HR between quartiles to GR
If the hazard function of a type of event is exp(α + β · x), where the risk variable X has a normal distribution with mean 0 and standard deviation 1, then the value of the hazard function of an individual chosen by random in the interval a to b of X is\( \begin{aligned} & \exp (\alpha ) \cdot \int\limits_{a}^{b} {\exp (\beta \cdot x) \cdot \exp ( - x^{2} /2)/\sqrt {2 \cdot \pi } dx} /(\varPhi (b) - \varPhi (a)) \\ & \quad = { \exp }(\alpha + \beta^{2} /2) \cdot \int\limits_{a}^{b} {{ \exp }( - (x - \beta )^{2} /2)/\sqrt {2 \cdot \pi } dx} /(\varPhi (b) - \varPhi (a)) \\ & \quad {\text{ = exp}}(\alpha + \beta^{2} /2) \cdot (\varPhi (b - \beta ) - \varPhi (a - \beta ))/(\varPhi (b) - \varPhi (a)) \\ \end{aligned} \)
If we consider four quartiles of the distribution of BTMs, Q1, Q2, Q3, and Q4, then the limits a and b will be −∝, −0.67458, 0, 0.67458, and ∝.
Thus, the following relationships are fulfilled:
If such a quotient is put equal to a number R, then it is not trivial to solve b (with a possible exception for the first quotient). One of two possibilities is to use an iterative procedure. Let us consider
Then we get
We have the general relationship f(x) ≈ f(x 0) + f′(x 0) · (x − x 0). To solve f(x) = Z, we use the relationship
repeatedly. In the special case considered, we have Z = 0. The derivative of φ(0.67458 − β), for example, is −exp[−(0.67458 − β)2/2]/(√2 · π).
Rights and permissions
About this article
Cite this article
Johansson, H., Odén, A., Kanis, J.A. et al. A Meta-Analysis of Reference Markers of Bone Turnover for Prediction of Fracture. Calcif Tissue Int 94, 560–567 (2014). https://doi.org/10.1007/s00223-014-9842-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00223-014-9842-y