Skip to main content
Log in

A Dual-Radioisotope Hybrid Whole-Body Micro-Positron Emission Tomography/Computed Tomography System Reveals Functional Heterogeneity and Early Local and Systemic Changes Following Targeted Radiation to the Murine Caudal Skeleton

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

The purpose of this study was to develop a longitudinal non-invasive functional imaging method using a dual-radioisotope hybrid micro-positron emission tomography/computed tomography (PET/CT) scanner in order to assess both the skeletal metabolic heterogeneity and the effect of localized radiation that models therapeutic cancer treatment on marrow and bone metabolism. Skeletally mature BALB/c female mice were given clinically relevant local radiation (16 Gy) to the hind limbs on day 0. Micro-PET/CT acquisition was performed serially for the same mice on days −5 and +2 with FDG and days −4 and +3 with NaF. Serum levels of pro-inflammatory cytokines were measured. Significant differences (p < 0.0001) in marrow metabolism (measured by FDG) and bone metabolism (measured by NaF) were observed among bones before radiation, which demonstrates functional heterogeneity in the marrow and mineralized bone throughout the skeleton. Radiation significantly (p < 0.0001) decreased FDG uptake but increased NaF uptake (p = 0.0314) in both irradiated and non-irradiated bones at early time points. An increase in IL-6 was observed with a significant abscopal (distant) effect on marrow and bone metabolic function. Radiation significantly decreased circulating IGF-1 (p < 0.01). Non-invasive longitudinal imaging with dual-radioisotope micro-PET/CT is feasible to investigate simultaneous changes in marrow and bone metabolic function at local and distant skeletal sites in response to focused radiation injury. Distinct local and remote changes may be affected by several cytokines activated early after local radiation exposure. This approach has the potential for longer-term studies to clarify the effects of radiation on marrow and bone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Siegel R, DeSantis C, Virgo K, Stein K, Mariotto A, Smith T, Cooper D, Gansler T, Lerro C, Fedewa S (2012) Cancer treatment and survivorship statistics. CA Cancer J Clin 62(4):220–241

    Article  PubMed  Google Scholar 

  2. Frost ML, Blake GM, Cook GJ, Marsden PK, Fogelman I (2009) Differences in regional bone perfusion and turnover between lumbar spine and distal humerus: 18F-fluoride PET study of treatment-naive and treated postmenopausal women. Bone 45(5):942–948

    Article  PubMed  Google Scholar 

  3. Hui SK, Khalil A, Zhang Y, Coghill K, Le C, Dusenbery K, Froelich J, Yee D, Downs L (2010) Longitudinal assessment of bone loss from diagnostic computed tomography scans in gynecologic cancer patients treated with chemotherapy and radiation. Am J Obstet Gynecol 203(4):353.e351–353.e357

    Article  Google Scholar 

  4. Bolan PJ, Arentsen L, Sueblinvong T, Zhang Y, Moeller S, Carter JS, Downs LS, Ghebre R, Yee D, Froelich J (2013) Water–fat MRI for assessing changes in bone marrow composition due to radiation and chemotherapy in gynecologic cancer patients. J Magn Reson Imaging 38(6):1578–1584

    Article  PubMed  Google Scholar 

  5. Chityala R, Pudipeddi S, Arensten L, Hui S (2013) Segmentation and visualization of a large, high-resolution micro-CT data of mice. J Digit Imaging 26(2):302–308

    Article  PubMed Central  PubMed  Google Scholar 

  6. Huchet A, Belkacémi Y, Frick J, Prat M, Muresan-Kloos I, Altan D, Chapel A, Gorin NC, Gourmelon P, Bertho JM (2003) Plasma Flt-3 ligand concentration correlated with radiation-induced bone marrow damage during local fractionated radiotherapy. Int J Radiat Oncol Biol Phys 57(2):508–515

    Article  PubMed  Google Scholar 

  7. Hui SK, Fairchild GR, Kidder LS, Sharma M, Bhattacharya M, Jackson S, Le C, Petryk A, Islam MS, Yee D (2013) The influence of therapeutic radiation on the patterns of bone remodeling in ovary-intact and ovariectomized mice. Calcif Tissue Int 92(4):372–384

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  8. Nielsen OS, Munro A, Tannock I (1991) Bone metastases: pathophysiology and management policy. J Clin Oncol 9(3):509–524

    PubMed  CAS  Google Scholar 

  9. Hui SK, Sharkey L, Kidder LS, Zhang Y, Fairchild G, Coghill K, Xian CJ, Yee D (2012) The influence of therapeutic radiation on the patterns of bone marrow in ovary-intact and ovariectomized mice. PLoS ONE 7(8):e42668

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Bianco P (2011) The stem cell next door: skeletal and hematopoietic stem cell “niches” in bone. Endocrinology 152(8):2957–2962

    Article  PubMed  CAS  Google Scholar 

  11. Fowler J (2006) Development of radiobiology for oncology—a personal view. Phys Med Biol 51(13):R263–R286

    Article  PubMed  Google Scholar 

  12. Higashi T, Fisher SJ, Brown RS, Nakada K, Walter GL, Wahl RL (2000) Evaluation of the early effect of local irradiation on normal rodent bone marrow metabolism using FDG: preclinical PET studies. J Nucl Med 41(12):2026–2035

    PubMed  CAS  Google Scholar 

  13. Czernin J, Satyamurthy N, Schiepers C (2010) Molecular mechanisms of bone 18F-NaF deposition. J Nucl Med 51(12):1826–1829

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  14. Feng B, Yan S, Chen M, Austin DW, Deng J, Mintzer RA (2011) Automated least-squares calibration of the coregistration parameters for a micro PET-CT system. IEEE Trans Nucl Sci 58(5):2303–2307

    Article  Google Scholar 

  15. Wu HM, Sui G, Lee CC, Prins ML, Ladno W, Lin HD, Amy SY, Phelps ME, Huang SC (2007) In vivo quantitation of glucose metabolism in mice using small-animal PET and a microfluidic device. J Nucl Med 48(5):837–845

    Article  PubMed  CAS  Google Scholar 

  16. Hawkins RA, Choi Y, Huang SC, Hoh CK, Dahlbom M, Schiepers C, Satyamurthy N, Barrio JR, Phelps ME (1992) Evaluation of the skeletal kinetics of fluorine-18-fluoride ion with PET. J Nucl Med 33(5):633–642

    PubMed  CAS  Google Scholar 

  17. Rose BS, Liang Y, Lau SK, Jensen LG, Yashar CM, Hoh CK, Mell LK (2012) Correlation between radiation dose to 18F-FDG-PET defined active bone marrow subregions and acute hematologic toxicity in cervical cancer patients treated with chemoradiotherapy. Int J Radiat Oncol Biol Phys 83(4):1185–1191

    Article  PubMed  CAS  Google Scholar 

  18. Ritman EL, Bolander ME, Fitzpatrick LA, Turner RT (1998) Micro-CT imaging of structure-to-function relationship of bone microstructure and associated vascular involvement. Technol Health Care 6(5):403–412

    PubMed  CAS  Google Scholar 

  19. Turner CH, Hsieh YF, Müller R, Bouxsein ML, Rosen CJ, McCrann ME, Donahue LR, Beamer WG (2001) Variation in bone biomechanical properties, microstructure, and density in BXH recombinant inbred mice. J Bone Miner Res 16(2):206–213

    Article  PubMed  CAS  Google Scholar 

  20. Rawlinson SC, McKay IJ, Ghuman M, Wellmann C, Ryan P, Prajaneh S, Zaman G, Hughes FJ, Kingsmill VJ (2009) Adult rat bones maintain distinct regionalized expression of markers associated with their development. PLoS ONE 4(12):e8358

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  21. Dobnig H, Turner R (1995) Evidence that intermittent treatment with parathyroid hormone increases bone formation in adult rats by activation of bone lining cells. Endocrinology 136(8):3632–3638

    PubMed  CAS  Google Scholar 

  22. Poncin G, Beaulieu A, Humblet C, Thiry A, Oda K, Boniver J, Defresne MP (2012) Characterization of spontaneous bone marrow recovery after sublethal total body irradiation: importance of the osteoblastic/adipocytic balance. PLoS ONE 7(2):e30818

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  23. Prise KM, O’Sullivan JM (2009) Radiation-induced bystander signalling in cancer therapy. Nat Rev Cancer 9(5):351–360

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  24. Jia D, Koonce NA, Griffin RJ, Jackson C, Corry PM (2010) Prevention and mitigation of acute death of mice after abdominal irradiation by the antioxidant N-acetyl-cysteine (NAC). Radiat Res 173(5):579–589

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  25. Ullrich R, Casarett G (1977) Interrelationship between the early inflammatory response and subsequent fibrosis after radiation exposure. Radiat Res 72(1):107–121

    Article  PubMed  CAS  Google Scholar 

  26. Maruo N, Morita I, Shirao M, Murota S (1992) IL-6 increases endothelial permeability in vitro. Endocrinology 131(2):710–714

    PubMed  CAS  Google Scholar 

  27. Van der Meeren A, Monti P, Vandamme M, Squiban C, Wysocki J, Griffiths N (2005) Abdominal radiation exposure elicits inflammatory responses and abscopal effects in the lungs of mice. Radiat Res 163(2):144–152

    Article  PubMed  Google Scholar 

  28. Babior BM (1978) Oxygen-dependent microbial killing by phagocytes (second of two parts). N Engl J Med 298(13):721–725

    Article  PubMed  CAS  Google Scholar 

  29. Lei X, Hossain M, Qadri SM, Liu L (2012) Different microvascular permeability responses elicited by the CXC chemokines MIP-2 and KC during leukocyte recruitment: role of LSP1. Biochem Biophys Res Commun 423(3):484–489

    Article  PubMed  CAS  Google Scholar 

  30. Joyce JA, Pollard JW (2008) Microenvironmental regulation of metastasis. Nat Rev Cancer 9(4):239–252

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  31. Camphausen K, Moses MA, Beecken WD, Khan MK, Folkman J, O’Reilly MS (2001) Radiation therapy to a primary tumor accelerates metastatic growth in mice. Cancer Res 61(5):2207–2211

    PubMed  CAS  Google Scholar 

  32. Rosen CJ (2008) Circulating IGF-I and bone remodeling: new insights into old questions. IBMS BoneKEy 5(1):7–15

    Article  Google Scholar 

  33. Ishimi Y, Miyaura C, Jin CH, Akatsu T, Abe E, Nakamura Y, Yamaguchi A, Yoshiki S, Matsuda T, Hirano T (1990) IL-6 is produced by osteoblasts and induces bone resorption. J Immunol 145(10):3297–3303

    PubMed  CAS  Google Scholar 

  34. Garrett I, Boyce B, Oreffo R, Bonewald L, Poser J, Mundy G (1990) Oxygen-derived free radicals stimulate osteoclastic bone resorption in rodent bone in vitro and in vivo. J Clin Invest 85(3):632–639

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  35. Hotta M, Fukuda I, Sato K, Hizuka N, Shibasaki T, Takano K (2000) The relationship between bone turnover and body weight, serum insulin-like growth factor (IGF) I, and serum IGF-binding protein levels in patients with anorexia nervosa. J Clin Endocrinol Metab 85(1):200–206

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health (1R01CA154491-01, 1R03AR055333-01A1, and 1K12-HD055887-01) and the Japan Society for the Promotion of Science Core to Core Program (23003). This work was also supported by PHS Cancer Center Support Grant P30 CA77398 and the Joseph E. Wargo Cancer Research Fund from the University of Minnesota. C. J. R. received funding support from the National Institutes of Health (R24DK092759). The authors acknowledge and thank Dr. Kihak Lee (Siemens Medical Solutions, Knoxville, TN) for advice and fruitful discussion pertaining to this experiment and report, Dr. Bruce E. Hammer (Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN) for help with the Siemens micro-PET/CT scanner, and Phuong T. Le (Maine Medical Center Research Institute, Scarborough, ME) for the measurement of pro-inflammatory markers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanta K. Hui.

Additional information

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yagi, M., Arentsen, L., Shanley, R.M. et al. A Dual-Radioisotope Hybrid Whole-Body Micro-Positron Emission Tomography/Computed Tomography System Reveals Functional Heterogeneity and Early Local and Systemic Changes Following Targeted Radiation to the Murine Caudal Skeleton. Calcif Tissue Int 94, 544–552 (2014). https://doi.org/10.1007/s00223-014-9839-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-014-9839-6

Keywords

Navigation