Skip to main content

Advertisement

Log in

Modulation of the Initial Mineralization Process of SaOS-2 Cells by Carbonic Anhydrase Activators and Polyphosphate

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Ca-phosphate/hydroxyapatite (HA) crystals constitute the mineral matrix of vertebrate bones, while Ca-carbonate is the predominant mineral of many invertebrates, like mollusks. Recent results suggest that CaCO3 is also synthesized during early bone formation. We demonstrate that carbonic anhydrase-driven CaCO3 formation in vitro is activated by organic extracts from the demosponge Suberites domuncula as well as by quinolinic acid, one component isolated from these extracts. Further results revealed that the stimulatory effect of bicarbonate (HCO3 ) ions on mineralization of osteoblast-like SaOS-2 cells is strongly enhanced if the cells are exposed to inorganic polyphosphate (polyP), a linear polymer of phosphate linked by energy-rich phosphodiester bonds. The effect of polyP, administered as polyP (Ca2+ salt), on HA formation was found to be amplified by addition of the carbonic anhydrase-activating sponge extract or quinolinic acid. Our results support the assumption that CaCO3 deposits, acting as bio-seeds for Ca-carbonated phosphate formation, are formed as an intermediate during HA mineralization and that the carbonic anhydrase-mediated formation of those deposits is under a positive–negative feedback control by bone alkaline phosphatase-dependent polyP metabolism, offering new targets for therapy of bone diseases/defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Xie B, Nancollas GH (2010) How to control the size and morphology of apatite nanocrystals in bone. Proc Natl Acad Sci USA 107:22369–22370

    Article  PubMed Central  PubMed  Google Scholar 

  2. Beniash E (2011) Biominerals—hierarchical nanocomposites: the example of bone. Wiley Interdiscip Rev Nanomed Nanobiotechnol 3:47–69

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  3. Posner AS, Duyckaerts (1954) Infrared study of the carbonate in bone, teeth and francolite. Experientia 10:424–425

    Article  PubMed  CAS  Google Scholar 

  4. Posner AS (1969) Crystal chemistry of bone mineral. Physiol Rev 49:760–792

    PubMed  CAS  Google Scholar 

  5. Biltz RM, Pellegrino ED (1977) The nature of bone carbonate. Clin Orthop 129:279–292

    Article  PubMed  CAS  Google Scholar 

  6. Poyart CF, Bursaux E, Fréminet A (1975) The bone CO2 compartment: evidence for a bicarbonate pool. Respir Physiol 25:89–99

    Article  PubMed  CAS  Google Scholar 

  7. Mann S, Parker SB, Ross MD, Skarnulis AJ, Williams RJ (1983) The ultrastructure of the calcium carbonate balance organs of the inner ear: an ultra-high resolution electron microscopy study. Proc R Soc Lond B 218:415–424

    Article  PubMed  CAS  Google Scholar 

  8. Pisam M, Jammet C, Laurent D (2002) First steps of otolith formation of the zebrafish: role of glycogen? Cell Tissue Res 310:163–168

    Article  PubMed  CAS  Google Scholar 

  9. Andrade LR, Lins U, Farina M, Kachar B, Thalmann R (2012) Immunogold TEM of otoconin 90 and otolin—relevance to mineralization of otoconia, and pathogenesis of benign positional vertigo. Hear Res 292:14–25

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Sebastian A, Harris ST, Ottaway JH, Todd KM, Morris RC Jr (1994) Improved mineral balance and skeletal metabolism in postmenopausal women treated with potassium bicarbonate. N Engl J Med 330:1776–1781

    Article  PubMed  CAS  Google Scholar 

  11. De Brito-Ashurst I, Varagunam M, Raftery MJ, Yaqoob MM (2009) Bicarbonate supplementation slows progression of CKD and improves nutritional status. J Am Soc Nephrol 20:2075–2084

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  12. Bachra BN, Trautz OR, Simon SL (1963) Precipitation of calcium carbonates and phosphates. I. Spontaneous precipitation of calcium carbonates and phosphates under physiological conditions. Arch Biochem Biophys 103:124–138

    Article  PubMed  CAS  Google Scholar 

  13. Roos A, Boron WF (1981) Intracellular pH. Physiol Rev 61:296–434

    PubMed  CAS  Google Scholar 

  14. Haddad GG, Boron WF (2000) Na+/HCO3 cotransporters in rat brain: expression in glia, neurons, and choroid plexus. J Neurosci 20:6839–6848

    PubMed  Google Scholar 

  15. Lindsey AE, Schneider K, Simmons DM, Baron R, Lee BS, Kopito RR (1990) Functional expression and subcellular localization of an anion exchanger from choroid plexus. Proc Natl Acad Sci USA 87:5278–5282

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  16. Casey JR, Sly WS, Shah GN, Alvarez BV (2009) Bicarbonate homeostasis in excitable tissues: role of AE3 Cl/HCO3− exchanger and carbonic anhydrase XIV interaction. Am J Physiol Cell Physiol 297:C1091–C1102

    Article  PubMed  CAS  Google Scholar 

  17. Wilbur KM, Jodrey LH (1955) Studies on shell formation. V. The inhibition of shell formation by carbonic anhydrase inhibitors. Biol Bull 108:359–365

    Article  CAS  Google Scholar 

  18. Berg JT, Ramanathan S, Gabrielli MG, Swenson ER (2004) Carbonic anhydrase in mammalian vascular smooth muscle. J Histochem Cytochem 52:1101–1106

    Article  PubMed  CAS  Google Scholar 

  19. Alvarez L, Fanjul M, Carter N, Hollande E (2001) Carbonic anhydrase II associated with plasma membrane in a human pancreatic duct cell line (CAPAN-1). J Histochem Cytochem 49:1045–1053

    Article  PubMed  CAS  Google Scholar 

  20. Purkerson JM, Schwartz GJ (2005) Expression of membrane-associated carbonic anhydrase isoforms IV, IX, XII, and XIV in the rabbit: induction of CA IV and IX during maturation. Am J Physiol Regul Integr Comp Physiol 288:R1256–R1263

    Article  PubMed  CAS  Google Scholar 

  21. Boonrungsiman S, Gentleman E, Carzaniga R, Evans ND, McComb DW, Porter AE, Stevens MM (2012) The role of intracellular calcium phosphate in osteoblast-mediated bone apatite formation. Proc Natl Acad Sci USA 109:14170–14175

    Article  PubMed Central  PubMed  Google Scholar 

  22. Omelon S, Georgiou J, Henneman ZJ, Wise LM, Sukhu B, Hunt T, Wynnyckyj C, Holmyard D, Bielecki R, Grynpas MD (2009) Control of vertebrate skeletal mineralization by polyphosphates. PLoS One 4:e5634

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  23. Posner AS, Betts F, Blumenthal NC (1978) Properties of nucleating systems. Metab Bone Dis Relat Res 1:179–183

    Article  CAS  Google Scholar 

  24. Wang XH, Schröder HC, Wang K, Kaandorp JA, Müller WEG (2012) Genetic, biological and structural hierarchies during sponge spicule formation: from soft sol-gels to solid 3D silica composite structures. Soft Matter 8:9501–9518

    Article  CAS  Google Scholar 

  25. Müller WEG, Schröder HC, Burghard Z, Pisignano D, Wang XH (2013) Silicateins—a novel paradigm in bioinorganic chemistry: enzymatic synthesis of inorganic polymeric silica. Chem Eur J 19:5790–5804

    Article  PubMed  CAS  Google Scholar 

  26. Peters A, Korte C, Hesse D, Zakharov N, Janek J (2007) Ionic conductivity and activation energy for oxygen ion transport in superlattices—the multilayer system CSZ (ZrO2 + CaO)/Al2O3. Solid State Ion 178:67–76

    Article  CAS  Google Scholar 

  27. Zhu Z, Xue LM, Han T, Jiao L, Qin LP, Li YS, Zheng HC, Zhang QY (2010) Antiosteoporotic effects and proteomic characterization of the target and mechanism of an Er-Xian decoction on osteoblastic UMR-106 and osteoclasts induced from RAW264.7. Molecules 15:4695–4710

    Article  PubMed  CAS  Google Scholar 

  28. Sly WS, Hewett-Emmett D, Whyte MP, Yu YS, Tashian RE (1983) Carbonic anhydrase II deficiency identified as the primary defect in the autosomal recessive syndrome of osteopetrosis with renal tubular acidosis and cerebral calcification. Proc Natl Acad Sci USA 80:2752–2756

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  29. Shinohara C, Yamashita K, Matsuo T, Kitamura S, Kawano F (2007) Effects of carbonic anhydrase inhibitor acetazolamide (AZ) on osteoclasts and bone structure. J Hard Tissue Biol 16:115–123

    Article  CAS  Google Scholar 

  30. Supuran CT, Scozzafava A (2000) Carbonic anhydrase inhibitors and their therapeutic potential. Expert Opin Ther Patents 10:575–600

    Article  CAS  Google Scholar 

  31. Pastorekova S, Parkkila S, Pastorek J, Supuran CT (2004) Carbonic anhydrases: current state of the art, therapeutic applications and future prospects. J Enzyme Inhib Med Chem 19:199–229

    Article  PubMed  CAS  Google Scholar 

  32. Supuran CT (2008) Carbonic anhydrases: novel therapeutic applications for inhibitors and activators. Nat Rev Drug Discov 7:168–181

    Article  PubMed  CAS  Google Scholar 

  33. Supuran CT (2008) Carbonic anhydrases—an overview. Curr Pharm Des 14:603–614

    Article  PubMed  CAS  Google Scholar 

  34. Müller WEG, Schröder HC, Schlossmacher U, Grebenjuk VA, Ushijima H, Wang XH (2013) Induction of carbonic anhydrase in SaOS-2 cells, exposed to bicarbonate and consequences for calcium phosphate crystal formation. Biomaterials 34:8671–8680

    Article  PubMed  CAS  Google Scholar 

  35. Müller WEG, Schröder HC, Schlossmacher U, Neufurth M, Geurtsen W, Korzhev M, Wang XH (2013) The enzyme carbonic anhydrase as an integral component of biogenic Ca-carbonate formation in sponge spicules. FEBS Open Bio 3:357–362

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  36. Müller WEG, Schlossmacher U, Schröder HC, Lieberwirth I, Glasser G, Korzhev M, Neufurth M, Wang XH (2013) Enzyme-accelerated and structure-guided crystallization of Ca-carbonate: role of the carbonic anhydrase in the homologous system. Acta Biomater 10:450–462

    Article  PubMed  CAS  Google Scholar 

  37. Müller WEG, Wiens M, Adell T, Gamulin V, Schröder HC, Müller IM (2004) Bauplan of Urmetazoa: basis for genetic complexity of Metazoa. Int Rev Cytol 235:53–92

    Article  PubMed  Google Scholar 

  38. Müller WEG, Wang XH, Diehl-Seifert B, Kropf K, Schloßmacher U, Lieberwirth I, Glasser G, Wiens M, Schröder HC (2011) Inorganic polymeric phosphate/polyphosphate as an inducer of alkaline phosphatase and a modulator of intracellular Ca2+ level in osteoblasts (SaOS-2 cells) in vitro. Acta Biomater 7:2661–2671

    Article  PubMed  CAS  Google Scholar 

  39. Mahamid J, Sharir A, Gur D, Zelzer E, Addadi L, Weiner S (2011) Bone mineralization proceeds through intracellular calcium phosphate loaded vesicles: a cryo-electron microscopy study. J Struct Biol 174:527–535

    Article  PubMed  CAS  Google Scholar 

  40. Sadan O, Shemesh N, Barzilay R, Dadon-Nahum M, Blumenfeld-Katzir T, Assaf Y, Yeshurun M, Djaldetti R, Cohen Y, Melamed E, Offen D (2012) Mesenchymal stem cells induced to secrete neurotrophic factors attenuate quinolinic acid toxicity: a potential therapy for Huntington’s disease. Exp Neurol 234:417–427

    Article  PubMed  CAS  Google Scholar 

  41. Gilis M, Grauby O, Willenz P, Dubois P, Heresanu V, Baronnet A (2013) Biomineralization in living hypercalcified demosponges: toward a shared mechanism? J Struct Biol 183:441–454

    Article  PubMed  CAS  Google Scholar 

  42. Fogh J, Fogh JM, Orfeo T (1977) One hundred and twenty-seven cultured human tumor cell lines producing tumors in nude mice. J Natl Cancer Inst 59:221–226

    PubMed  CAS  Google Scholar 

  43. Mikami T, Koyama T, Koyama T, Imakiire A, Yamamoto K, Furuhata M, Toyota H, Mizuguchi J (2006) C-jun N-terminal kinase activation is required for apoptotic cell death induced by TNF-related apoptosis-inducing ligand plus DNA-damaging agents in sarcoma cell lines. Anticancer Res 26:1153–1160

    PubMed  CAS  Google Scholar 

  44. Schröder HC, Borejko A, Krasko A, Reiber A, Schwertner H, Müller WEG (2005) Mineralization of SaOS-2 cells on enzymatically (silicatein) modified bioactive osteoblast-stimulating surfaces. J Biomed Mater Res B Appl Biomater 75:387–392

    Article  PubMed  CAS  Google Scholar 

  45. Müller WEG, Boreiko A, Wang XH, Krasko A, Geurtsen W, Custódio MR, Winkler T, Lukić-Bilela L, Link T, Schröder HC (2007) Morphogenetic activity of silica and bio-silica on the expression of genes, controlling biomineralization using SaOS-2 cells. Calcif Tissue Int 81:382–393

    Article  PubMed  CAS  Google Scholar 

  46. Wiens M, Wang XH, Schlossmacher U, Lieberwirth I, Glasser G, Ushijima H, Schröder HC, Müller WEG (2010) Osteogenic potential of bio-silica on human osteoblast-like (SaOS-2) cells. Calcif Tissue Int 87:513–524

    Article  PubMed  CAS  Google Scholar 

  47. Wiens M, Wang XH, Schröder HC, Kolb U, Schlossmacher U, Ushijima H, Müller WEG (2010) The role of biosilica in the osteoprotegerin/RANKL ratio in human osteoblastlike cells. Biomaterials 31:7716–7725

    Article  PubMed  CAS  Google Scholar 

  48. Gregory CA, Gunn WG, Peister A, Prockop DJ (2004) An alizarin red–based assay of mineralization by adherent cells in culture: comparison with cetylpyridinium chloride extraction. Anal Biochem 329:77–84

    Article  PubMed  CAS  Google Scholar 

  49. Magid E (1968) The dehydration kinetics of human erythrocytic carbonic anhydrases B and C. Biochim Biophys Acta 151:236–244

    Article  PubMed  CAS  Google Scholar 

  50. Carter ND, Chegwidden WR, Hewett-Emmett D, Jeffery S, Shiels A, Tashian RE (1984) Novel inhibition of carbonic anhydrase isozymes I, II and III by carbamoyl phosphate. FEBS Lett 165:197–200

    Article  PubMed  CAS  Google Scholar 

  51. Slowinski EJ, Wolsey WC, Masterton WL (2009) Chemical principles in the laboratory, 9th edn. Brooks/Cole, Belmont

    Google Scholar 

  52. Schröder HC, Sudek S, De Caro S, De Rosa S, Perović S, Steffen R, Müller IM, Müller WEG (2002) Synthesis of the neurotoxin quinolinic acid in apoptotic tissue from Suberites domuncula: cell biological, molecular biological and chemical analyses. Mar Biotechnol 4:546–558

    Article  PubMed  CAS  Google Scholar 

  53. Reinhard JF, Erickson JB, Flanagan EM (1994) Quinolinic acid in neurological disease: opportunities for novel drug discovery. Adv Pharmacol 30:85–127

    Article  PubMed  CAS  Google Scholar 

  54. Salge T, Terborg R (2009) EDS microanalysis with the silicon drift detector (CDD): innovative analysis options for mineralogical and material science application. Anadolu Univ J Sci Technol 10:45–55

    Google Scholar 

  55. Sachs L (1984) Angewandte Statistik. Springer, Berlin

    Book  Google Scholar 

  56. Raz S, Testeniere O, Hecker A, Weiner S, Luquet G (2002) Stable amorphous calcium carbonate is the main component of the calcium storage structures of the crustacean Orchestia cavimana. Biol Bull 203:269–274

    Article  PubMed  CAS  Google Scholar 

  57. Mahamid J, Aichmayer B, Shimoni E, Ziblat R, Li C, Siegel S, Paris O, Fratzl P, Weiner S, Addadi L (2010) Mapping amorphous calcium phosphate transformation into crystalline mineral from the cell to the bone in zebrafish fin rays. Proc Natl Acad Sci USA 107:6316–6321

    Article  PubMed Central  PubMed  Google Scholar 

  58. Boskey AL, Posner AS (1973) Conversion of amorphous calcium phosphate to microcrystalline hydroxyapatite: a pH-dependent, solution-mediated, solid–solid conversion. J Phys Chem 77:2313–2317

    Article  CAS  Google Scholar 

  59. Nudelman F, Pieterse K, George A, Bomans PH, Friedrich H, Brylka LJ, Hilbers PA, de With G, Sommerdijk NA (2010) The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors. Nat Mater 9:1004–1009

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  60. Dey A, Bomans PH, Müller FA, Will J, Frederik PM, de With G, Sommerdijk NA (2010) The role of prenucleation clusters in surface-induced calcium phosphate crystallization. Nat Mater 9:1010–1014

    Article  PubMed  CAS  Google Scholar 

  61. Bentov S, Weil S, Glazer L, Sagi A, Berman A (2010) Stabilization of amorphous calcium carbonate by phosphate rich organic matrix proteins and by single phosphoamino acids. J Struct Biol 171:207–215

    Article  PubMed  CAS  Google Scholar 

  62. Querido W, Abraçado LG, Rossi AL, Campos APC, Fragoso CLR, Farina M (2011) Characterization of the bone-like apatite produced in a novel model for bone mineralization under treatment with strontium ranelate. Microsc Acta Suppl 20B:1–2

    Google Scholar 

  63. Rey C, Kim HM, Gerstenfeld L, Glimcher MJ (1996) Characterization of the apatite crystals of bone and their maturation in osteoblast cell culture: comparison with native bone crystals. Connect Tissue Res 35:343–349

    Article  PubMed  CAS  Google Scholar 

  64. Leyhausen G, Lorenz B, Zhu H, Geurtsen W, Bohnensack R, Müller WEG, Schröder HC (1998) Inorganic polyphosphate in human osteoblast-like cells. J Bone Miner Res 13:803–812

    Article  PubMed  CAS  Google Scholar 

  65. Hofmann LC, Straub S, Bischof K (2013) Elevated CO2 levels affect the activity of nitrate reductase and carbonic anhydrase in the calcifying rhodophyte Corallina officinalis. J Exp Bot 64:899–908

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  66. Sarma AS, Daum T, Müller WEG (1993) Secondary metabolites from marine sponges., Part I: Origin and chemistry of new metabolites, and synthetic studies. Part II: Biological properties of new metabolites and physiological activities of avarol and related compounds isolated from Dysidea sp.Akademie gemeinnütziger Wissenschaften zu Erfurt, Ullstein-Mosby Verlag, Berlin

    Google Scholar 

  67. Bhakuni DS, Rawat DS (2005) Bioactive marine natural products. Springer, New York

    Google Scholar 

  68. Lindskog S (1997) Structure and mechanism of carbonic anhydrase. Pharmacol Ther 74:1–20

    Article  PubMed  CAS  Google Scholar 

  69. Ilies M, Banciu MD, Ilies MA, Scozzafava A, Caproiu MT, Supuran CT (2002) Carbonic anhydrase activators: design of high affinity isozymes I, II and IV activators, incorporating tri-/tetrasubstituted-pyridinium-azole moieties. J Med Chem 45:504–510

    Article  PubMed  CAS  Google Scholar 

  70. An Z (2009) Bis(μ-2′-carboxylatobiphenyl-2-carboxylic acid-κ2O2:O2′)bis[(2,2′-bipyridine-κ2 N, N′)(2′-carboxylatobiphenyl-2-carboxylic acid-κO2′)zinc(II)]. Acta Crystallogr E E65:m1501

    Article  CAS  Google Scholar 

  71. Sei Y, Fossom L, Goping G, Skolnick P, Basile AS (1998) Quinolinic acid protects rat cerebellar granule cells from glutamate-induced apoptosis. Neurosci Lett 241:180–184

    Article  PubMed  CAS  Google Scholar 

  72. Pavlov E, Aschar-Sobbi R, Campanella M, Turner RJ, Gómez-García MR, Abramov AY (2010) Inorganic polyphosphate and energy metabolism in mammalian cells. J Biol Chem 285:9420–9428

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  73. Wang H, Zhang P, Liu L, Zou L (2013) Hierarchical organization and regulation of the hematopoietic stem cell osteoblastic niche. Crit Rev Oncol Hematol 85:1–8

    Article  PubMed  Google Scholar 

  74. Rao NN, Gómez-García MR, Kornberg A (2009) Inorganic polyphosphate: essential for growth and survival. Annu Rev Biochem 78:605–647

    Article  PubMed  CAS  Google Scholar 

  75. Ilies M, Scozzafava A, Supuran CT (2004) Carbonic anhydrase activators. In: Supuran CT, Scozzafava A, Conway J (eds) Carbonic anhydrase—its inhibitors and activators. CRC Press, Boca Raton, pp 317–352

    Google Scholar 

Download references

Acknowledgments

W. E. G. M. is a holder of an ERC Advanced Investigator Grant (268476 BIOSILICA). This work was supported by grants from the Deutsche Forschungsgemeinschaft (Schr 277/10-3), the European Commission (“Bio-Scaffolds-Customized Rapid Prototyping of Bioactive Scaffolds,” 604036; Industry-Academia Partnerships and Pathways “CoreShell,” 286059; “MarBioTec*EU-CN*,” 268476; and “BlueGenics,” 311848), and the International Human Frontier Science Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaohong Wang or Werner E. G. Müller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Schröder, H.C., Schlossmacher, U. et al. Modulation of the Initial Mineralization Process of SaOS-2 Cells by Carbonic Anhydrase Activators and Polyphosphate. Calcif Tissue Int 94, 495–509 (2014). https://doi.org/10.1007/s00223-013-9833-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-013-9833-4

Keywords

Navigation