Skip to main content

Advertisement

Log in

Effects of Extracellular Phosphate on Gene Expression in Murine Osteoblasts

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

That phosphate homeostasis is tightly linked to skeletal mineralization is probably best underscored by the fact that the phosphaturic hormone FGF23 is primarily expressed by terminally differentiated osteoblasts/osteocytes and that increased circulating FGF23 levels are causative for different types of hypophosphatemic rickets. In contrast, FGF23 inactivation results in hyperphosphatemia, and unexpectedly this phenotype is associated with severe osteomalacia in Fgf23-deficient mice. In this context it is interesting that different cell types have been shown to respond to extracellular phosphate, thereby raising the concept that phosphate can act as a signaling molecule. To identify phosphate-responsive genes in primary murine osteoblasts we performed genome wide expression analysis with cells maintained in medium containing either 1 or 4 mM sodium phosphate for 6 h. As confirmed by qRT-PCR, this analysis revealed that several known osteoblast differentiation markers (Bglap, Ibsp, and Phex) were unaffected by raising extracellular phosphate levels. In contrast, we found that the expression of Enpp1 and Ank, two genes encoding inhibitors of matrix mineralization, was induced by extracellular phosphate, while the expression of Sost and Dkk1, two genes encoding inhibitors of bone formation, was negatively regulated. The ability of osteoblasts to respond to extracellular phosphate was dependent on their differentiation state, and shRNA-dependent repression of the phosphate transporter Slc20a1 in MC3T3-E1 cells partially abolished their molecular response to phosphate. Taken together, our results provide further evidence for a role of extracellular phosphate as a signaling molecule and raise the possibility that severe hyperphosphatemia can negatively affect skeletal mineralization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bergwitz C, Juppner H (2012) FGF23 and syndromes of abnormal renal phosphate handling. Adv Exp Med Biol 728:41–64

    Article  PubMed  CAS  Google Scholar 

  2. Chong WH, Molinolo AA, Chen CC, Collins MT (2011) Tumor-induced osteomalacia. Endocr Relat Cancer 18:R53–R77

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  3. ADHR Consortium (2000) Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23. Nat Genet 26:345–348

    Article  CAS  Google Scholar 

  4. Benet-Pagès A, Orlik P, Strom TM, Lorenz-Depiereux B (2005) An FGF23 missense mutation causes familial tumoral calcinosis with hyperphosphatemia. Hum Mol Genet 14:385–390

    Article  PubMed  CAS  Google Scholar 

  5. Shimada T, Kakitani M, Yamazaki Y, Hasegawa H, Takeuchi Y, Fujita T, Fukumoto S, Tomizuka K, Yamashita T (2004) Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. J Clin Invest 113:561–568

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  6. Sitara D, Razzaque MS, Hesse M, Yoganathan S, Taguchi T, Erben RG, Juppner H, Lanske B (2004) Homozygous ablation of fibroblast growth factor-23 results in hyperphosphatemia and impaired skeletogenesis, and reverses hypophosphatemia in Phex-deficient mice. Matrix Biol 23:421–432

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  7. Mansfield K, Rajpurohit R, Shapiro IM (1999) Extracellular phosphate ions cause apoptosis of terminally differentiated epiphyseal chondrocytes. J Cell Physiol 179:276–286

    Article  PubMed  CAS  Google Scholar 

  8. Teixeira CC, Mansfield K, Hertkorn C, Ischiropoulos H, Shapiro IM (2001) Phosphate-induced chondrocyte apoptosis is linked to nitric oxide generation. Am J Physiol Cell Physiol 281:C833–C839

    PubMed  CAS  Google Scholar 

  9. Miedlich SU, Zalutskaya A, Zhu ED, Demay MB (2010) Phosphate-induced apoptosis of hypertrophic chondrocytes is associated with a decrease in mitochondrial membrane potential and is dependent upon Erk1/2 phosphorylation. J Biol Chem 285:18270–18275

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Ohnishi M, Razzaque MS (2010) Dietary and genetic evidence for phosphate toxicity accelerating mammalian aging. FASEB J 24:3562–3571

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  11. Liu S, Zhou J, Tang W, Jiang X, Rowe DW, Quarles LD (2006) Pathogenic role of Fgf23 in Hyp mice. Am J Physiol Endocrinol Metab 291:E38–E49

    Article  PubMed  CAS  Google Scholar 

  12. Sitara D, Kim S, Razzaque MS, Bergwitz C, Taguchi T, Schuler C, Erben RG, Lanske B (2008) Genetic evidence of serum phosphate-independent functions of FGF-23 on bone. PLoS Genet 4:e1000154

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  13. Chang SH, Yu KN, Lee YS, An GH, Beck GR Jr, Colburn NH, Lee KH, Cho MH (2006) Elevated inorganic phosphate stimulates Akt-ERK1/2-Mnk1 signaling in human lung cells. Am J Respir Cell Mol Biol 35:528–539

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  14. Julien M, Magne D, Masson M, Rolli-Derkinderen M, Chassande O, Cario-Toumaniantz C, Cherel Y, Weiss P, Guicheux J (2007) Phosphate stimulates matrix Gla protein expression in chondrocytes through the extracellular signal regulated kinase signaling pathway. Endocrinology 148:530–537

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  15. Wittrant Y, Bourgine A, Khoshniat S, Alliot-Licht B, Masson M, Gatius M, Rouillon T, Weiss P, Beck L, Guicheux J (2009) Inorganic phosphate regulates Glvr-1 and -2 expression: role of calcium and ERK1/2. Biochem Biophys Res Commun 381:259–263

    Article  PubMed  CAS  Google Scholar 

  16. Kimata M, Michigami T, Tachikawa K, Okada T, Koshimizu T, Yamazaki M, Kogo M, Ozono K (2010) Signaling of extracellular inorganic phosphate up-regulates cyclin D1 expression in proliferating chondrocytes via the Na+/Pi cotransporter Pit-1 and Raf/MEK/ERK pathway. Bone 47:938–947

    Article  PubMed  CAS  Google Scholar 

  17. Yamazaki M, Ozono K, Okada T, Tachikawa K, Kondou H, Ohata Y, Michigami T (2010) Both FGF23 and extracellular phosphate activate Raf/MEK/ERK pathway via FGF receptors in HEK293 cells. J Cell Biochem 111:1210–1221

    Article  PubMed  CAS  Google Scholar 

  18. Khoshniat S, Bourgine A, Julien M, Weiss P, Guicheux J, Beck L (2011) The emergence of phosphate as a specific signaling molecule in bone and other cell types in mammals. Cell Mol Life Sci 68:205–218

    Article  PubMed  CAS  Google Scholar 

  19. Kanatani M, Sugimoto T, Kano J, Chihara K (2002) IGF-I mediates the stimulatory effect of high phosphate concentration on osteoblastic cell proliferation. J Cell Physiol 190:306–312

    Article  PubMed  CAS  Google Scholar 

  20. Beck GR Jr, Knecht N (2003) Osteopontin regulation by inorganic phosphate is ERK1/2-, protein kinase C-, and proteasome-dependent. J Biol Chem 278:41921–41929

    Article  PubMed  CAS  Google Scholar 

  21. Conrads KA, Yi M, Simpson KA, Lucas DA, Camalier CE, Yu LR, Veenstra TD, Stephens RM, Conrads TP, Beck GR Jr (2005) A combined proteome and microarray investigation of inorganic phosphate-induced pre-osteoblast cells. Mol Cell Proteomics 4:1284–1296

    Article  PubMed  CAS  Google Scholar 

  22. Naviglio S, Spina A, Chiosi E, Fusco A, Illiano F, Pagano M, Romano M, Senatore G, Sorrentino A, Sorvillo L, Illiano G (2006) Inorganic phosphate inhibits growth of human osteosarcoma U2OS cells via adenylate cyclase/cAMP pathway. J Cell Biochem 98:1584–1596

    Article  PubMed  CAS  Google Scholar 

  23. Yoshiko Y, Candeliere GA, Maeda N, Aubin JE (2007) Osteoblast autonomous Pi regulation via Pit1 plays a role in bone mineralization. Mol Cell Biol 27:4465–4474

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  24. Jochum W, David JP, Elliott C, Wutz A, Plenk H Jr, Matsuo K, Wagner EF (2000) Increased bone formation and osteosclerosis in mice overexpressing the transcription factor Fra-1. Nat Med 6:980–984

    Article  PubMed  CAS  Google Scholar 

  25. Eferl R, Hoebertz A, Schilling AF, Rath M, Karreth F, Kenner L, Amling M, Wagner EF (2004) The Fos-related antigen Fra-1 is an activator of bone matrix formation. EMBO J 23:2789–2799

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  26. Julien M, Khoshniat S, Lacreusette A, Gatius M, Bozec A, Wagner EF, Wittrant Y, Masson M, Weiss P, Beck L, Magne D, Guicheux J (2009) Phosphate-dependent regulation of MGP in osteoblasts: role of ERK1/2 and Fra-1. J Bone Miner Res 24:1856–1868

    Article  PubMed  CAS  Google Scholar 

  27. Luo G, Ducy P, McKee MD, Pinero GJ, Loyer E, Behringer RR, Karsenty G (1997) Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein. Nature 386:78–81

    Article  PubMed  CAS  Google Scholar 

  28. Khoshniat S, Bourgine A, Julien M, Petit M, Pilet P, Rouillon T, Masson M, Gatius M, Weiss P, Guicheux J, Beck L (2011) Phosphate-dependent stimulation of MGP and OPN expression in osteoblasts via the ERK1/2 pathway is modulated by calcium. Bone 48:894–902

    Article  PubMed  CAS  Google Scholar 

  29. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  30. Sudo H, Kodama HA, Amagai Y, Yamamoto S, Kasai S (1983) In vitro differentiation and calcification in a new clonal osteogenic cell line derived from newborn mouse calvaria. J Cell Biol 96:191–198

    Article  PubMed  CAS  Google Scholar 

  31. Bergwitz C, Juppner H (2010) Regulation of phosphate homeostasis by PTH, vitamin D, and FGF23. Annu Rev Med 61:91–104

    Article  PubMed  CAS  Google Scholar 

  32. Bergwitz C, Juppner H (2009) Disorders of phosphate homeostasis and tissue mineralisation. Endocr Dev 16:133–156

    Article  PubMed  CAS  Google Scholar 

  33. Ecarot B, Glorieux FH, Desbarats M, Travers R, Labelle L (1992) Defective bone formation by Hyp mouse bone cells transplanted into normal mice: evidence in favor of an intrinsic osteoblast defect. J Bone Miner Res 7:215–220

    Article  PubMed  CAS  Google Scholar 

  34. Xiao G, Wang D, Benson MD, Karsenty G, Franceschi RT (1998) Role of the alpha2-integrin in osteoblast-specific gene expression and activation of the Osf2 transcription factor. J Biol Chem 273:32988–32994

    Article  PubMed  CAS  Google Scholar 

  35. Seitz S, Rendenbach C, Barvencik F, Streichert T, Jeschke A, Schulze J, Amling M, Schinke T (2013) Retinol deprivation partially rescues the skeletal mineralization defects of Phex-deficient Hyp mice. Bone 53:231–238

    Article  PubMed  CAS  Google Scholar 

  36. Bergwitz C, Juppner H (2011) Phosphate sensing. Adv Chronic Kidney Dis 18:132–144

    Article  PubMed Central  PubMed  Google Scholar 

  37. Ho AM, Johnson MD, Kingsley DM (2000) Role of the mouse ank gene in control of tissue calcification and arthritis. Science 289:265–270

    Article  PubMed  CAS  Google Scholar 

  38. Pendleton A, Johnson MD, Hughes A, Gurley KA, Ho AM, Doherty M, Dixey J, Gillet P, Loeuille D, McGrath R, Reginato A, Shiang R, Wright G, Netter P, Williams C, Kingsley DM (2002) Mutations in ANKH cause chondrocalcinosis. Am J Hum Genet 71:933–940

    Article  PubMed Central  PubMed  Google Scholar 

  39. Okawa A, Nakamura I, Goto S, Moriya H, Nakamura Y, Ikegawa S (1998) Mutation in Npps in a mouse model of ossification of the posterior longitudinal ligament of the spine. Nat Genet 19:271–273

    Article  PubMed  CAS  Google Scholar 

  40. Nakamura I, Ikegawa S, Okawa A, Okuda S, Koshizuka Y, Kawaguchi H, Nakamura K, Koyama T, Goto S, Toguchida J, Matsushita M, Ochi T, Takaoka K, Nakamura Y (1999) Association of the human NPPS gene with ossification of the posterior longitudinal ligament of the spine (OPLL). Hum Genet 104:492–497

    Article  PubMed  CAS  Google Scholar 

  41. Rutsch F, Ruf N, Vaingankar S, Toliat MR, Suk A, Hohne W, Schauer G, Lehmann M, Roscioli T, Schnabel D, Epplen JT, Knisely A, Superti-Furga A, McGill J, Filippone M, Sinaiko AR, Vallance H, Hinrichs B, Smith W, Ferre M, Terkeltaub R, Nurnberg P (2003) Mutations in ENPP1 are associated with “idiopathic” infantile arterial calcification. Nat Genet 34:379–381

    Article  PubMed  CAS  Google Scholar 

  42. Fleisch H, Bisaz S (1962) Mechanism of calcification: inhibitory role of pyrophosphate. Nature 195:911

    Article  PubMed  CAS  Google Scholar 

  43. Terkeltaub RA (2001) Inorganic pyrophosphate generation and disposition in pathophysiology. Am J Physiol Cell Physiol 281:C1–C11

    PubMed  CAS  Google Scholar 

  44. Hessle L, Johnson KA, Anderson HC, Narisawa S, Sali A, Goding JW, Terkeltaub R, Millan JL (2002) Tissue-nonspecific alkaline phosphatase and plasma cell membrane glycoprotein-1 are central antagonistic regulators of bone mineralization. Proc Natl Acad Sci USA 99:9445–9449

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  45. Harmey D, Hessle L, Narisawa S, Johnson KA, Terkeltaub R, Millan JL (2004) Concerted regulation of inorganic pyrophosphate and osteopontin by akp2, enpp1, and ank: an integrated model of the pathogenesis of mineralization disorders. Am J Pathol 164:1199–1209

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  46. Saier MH Jr (2000) A functional-phylogenetic classification system for transmembrane solute transporters. Microbiol Mol Biol Rev 64:354–411

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  47. Beck L, Leroy C, Salaun C, Margall-Ducos G, Desdouets C, Friedlander G (2009) Identification of a novel function of PiT1 critical for cell proliferation and independent of its phosphate transport activity. J Biol Chem 284:31363–31374

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  48. Beck L, Leroy C, Beck-Cormier S, Forand A, Salaun C, Paris N, Bernier A, Urena-Torres P, Prie D, Ollero M, Coulombel L, Friedlander G (2010) The phosphate transporter PiT1 (Slc20a1) revealed as a new essential gene for mouse liver development. PLoS One 5:e9148

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  49. Festing MH, Speer MY, Yang HY, Giachelli CM (2009) Generation of mouse conditional and null alleles of the type III sodium-dependent phosphate cotransporter PiT-1. Genesis 47:858–863

    PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the German Federal Ministry of Education and Research within the framework of the project Molecular Pathology of Osteoporosis (OsteoPath).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Schinke.

Additional information

C. Rendenbach, T.A. Yorgan and T. Heckt have contributed equally to this work.

The authors have stated that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 205 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rendenbach, C., Yorgan, T.A., Heckt, T. et al. Effects of Extracellular Phosphate on Gene Expression in Murine Osteoblasts. Calcif Tissue Int 94, 474–483 (2014). https://doi.org/10.1007/s00223-013-9831-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-013-9831-6

Keywords

Navigation