Skip to main content
Log in

Effect of Whole-Body Vibration and Insulin-Like Growth Factor-I on Muscle Paralysis-Induced Bone Degeneration after Botulinum Toxin Injection in Mice

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Botulinum toxin A (BTX)-induced muscle paralysis results in pronounced bone degradation with substantial bone loss. We hypothesized that whole-body vibration (WBV) and insulin-like growth factor-I (IGF-I) treatment can counteract paralysis-induced bone degradation following BTX injections by activation of the protein kinase B (Akt) signaling pathway. Female C57BL/6 mice (n = 60, 16 weeks) were assigned into six groups (n = 10 each): SHAM, BTX, BTX+WBV, BTX+IGF-I, BTX+WBV+IGF-I, and a baseline group, which was killed at the beginning of the study. Mice received a BTX (1.0 U/0.1 mL) or saline (SHAM) injection in the right hind limb. The BTX+IGF-I and BTX+WBV+IGF-I groups obtained daily subcutaneous injections of human IGF-I (1 μg/day). The BTX+WBV and BTX+WBV+IGF-I groups underwent WBV (25 Hz, 2.1 g, 0.83 mm) for 30 min/day, 5 days/week for 4 weeks. Femora were scanned by pQCT, and mechanical properties were determined. On tibial sections TRAP staining, static histomorphometry, and immunohistochemical staining against Akt, phospho-Akt, IGF-IR (IGF-I receptor), and phospho-IGF-IR were conducted. BTX injection decreased trabecular and cortical bone mineral density. The WBV and WBV+IGF-I groups showed no difference in trabecular bone mineral density compared to the SHAM group. The phospho-IGF-IR and phospho-Akt stainings were not differentially altered in the injected hind limbs between groups. We found that high-frequency, low-magnitude WBV can counteract paralysis-induced bone loss following BTX injections, while we could not detect any effect of treatment with IGF-I.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Frost HM (1999) An approach to estimating bone and joint loads and muscle strength in living subjects and skeletal remains. Am J Hum Biol 11:437–455

    Article  PubMed  Google Scholar 

  2. Qin W, Bauman WA, Cardozo C (2010) Bone and muscle loss after spinal cord injury: organ interactions. Ann N Y Acad Sci 1211:66–84

    Article  PubMed  Google Scholar 

  3. Vico L, Collet P, Guignandon A, Lafage-Proust MH, Thomas T, Rehaillia M, Alexandre C (2000) Effects of long-term microgravity exposure on cancellous and cortical weight-bearing bones of cosmonauts. Lancet 355:1607–1611

    Article  CAS  PubMed  Google Scholar 

  4. Warner SE, Sanford DA, Becker BA, Bain SD, Srinivasan S, Gross TS (2006) Botox induced muscle paralysis rapidly degrades bone. Bone 38:257–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Xie L, Rubin C, Judex S (2008) Enhancement of the adolescent murine musculoskeletal system using low-level mechanical vibrations. J Appl Physiol 104:1056–1062

    Article  PubMed  Google Scholar 

  6. Gilsanz V, Wren TA, Sanchez M, Dorey F, Judex S, Rubin C (2006) Low-level, high-frequency mechanical signals enhance musculoskeletal development of young women with low BMD. J Bone Miner Res 21:1464–1474

    Article  PubMed  Google Scholar 

  7. Rubin C, Recker R, Cullen D, Ryaby J, McCabe J, McLeod K (2004) Prevention of postmenopausal bone loss by a low-magnitude, high-frequency mechanical stimuli: a clinical trial assessing compliance, efficacy, and safety. J Bone Miner Res 19:343–351

    Article  PubMed  Google Scholar 

  8. Flieger J, Karachalios T, Khaldi L, Raptou P, Lyritis G (1998) Mechanical stimulation in the form of vibration prevents postmenopausal bone loss in ovariectomized rats. Calcif Tissue Int 63:510–514

    Article  CAS  PubMed  Google Scholar 

  9. Garman R, Rubin C, Judex S (2007) Small oscillatory accelerations, independent of matrix deformations, increase osteoblast activity and enhance bone morphology. PLoS ONE 2:e653

    Article  PubMed  PubMed Central  Google Scholar 

  10. Torvinen S, Kannus P, Sievanen H, Jarvinen TA, Pasanen M, Kontulainen S, Nenonen A, Jarvinen TL, Paakkala T, Jarvinen M, Vuori I (2003) Effect of 8-month vertical whole body vibration on bone, muscle performance, and body balance: a randomized controlled study. J Bone Miner Res 18:876–884

    Article  PubMed  Google Scholar 

  11. Christiansen BA, Kotiya AA, Silva MJ (2009) Constrained tibial vibration does not produce an anabolic bone response in adult mice. Bone 45:750–759

    Article  PubMed  PubMed Central  Google Scholar 

  12. van der Jagt OP, van der Linden JC, Waarsing JH, Verhaar JA, Weinans H (2012) Low-magnitude whole body vibration does not affect bone mass but does affect weight in ovariectomized rats. J Bone Miner Metab 30:40–46

    Article  PubMed  Google Scholar 

  13. Manske SL, Good CA, Zernicke RF, Boyd SK (2012) High-frequency, low-magnitude vibration does not prevent bone loss resulting from muscle disuse in mice following botulinum toxin injection. PLoS ONE 7:e36486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Canalis E, Giustina A, Bilezikian JP (2007) Mechanisms of anabolic therapies for osteoporosis. N Engl J Med 357:905–916

    Article  CAS  PubMed  Google Scholar 

  15. Rosen CJ, Rackoff PJ (2001) Emerging anabolic treatments for osteoporosis. Rheum Dis Clin North Am 27:215–233

    Article  CAS  PubMed  Google Scholar 

  16. Yakar S, Courtland HW, Clemmons D (2010) IGF-1 and bone: new discoveries from mouse models. J Bone Miner Res 25:2543–2552

    Article  PubMed  PubMed Central  Google Scholar 

  17. Rosen CJ (2004) Insulin-like growth factor I and bone mineral density: experience from animal models and human observational studies. Best Pract Res Clin Endocrinol Metab 18:423–435

    Article  CAS  PubMed  Google Scholar 

  18. Wergedal JE, Mohan S, Lundy M, Baylink DJ (1990) Skeletal growth factor and other growth factors known to be present in bone matrix stimulate proliferation and protein synthesis in human bone cells. J Bone Miner Res 5:179–186

    Article  CAS  PubMed  Google Scholar 

  19. Hock JM, Centrella M, Canalis E (1988) Insulin-like growth factor I has independent effects on bone matrix formation and cell replication. Endocrinology 122:254–260

    Article  CAS  PubMed  Google Scholar 

  20. Johansson AG, Lindh E, Ljunghall S (1992) Insulin-like growth factor I stimulates bone turnover in osteoporosis. Lancet 339:1619

    Article  CAS  PubMed  Google Scholar 

  21. Fowlkes JL, Thrailkill KM, Liu L, Wahl EC, Bunn RC, Cockrell GE, Perrien DS, Aronson J, Lumpkin CK (2006) Effects of systemic and local administration of recombinant human IGF-I (rhIGF-I) on de novo bone formation in an aged mouse model. J Bone Miner Res 21:1359–1366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wakisaka A, Tanaka H, Barnes J, Liang CT (1998) Effect of locally infused IGF-I on femoral gene expression and bone turnover activity in old rats. J Bone Miner Res 13:13–19

    Article  CAS  PubMed  Google Scholar 

  23. Bikle DD, Harris J, Halloran BP, Morey-Holton ER (1994) Skeletal unloading induces resistance to insulin-like growth factor I. J Bone Miner Res 9:1789–1796

    Article  CAS  PubMed  Google Scholar 

  24. Kostenuik PJ, Harris J, Halloran BP, Turner RT, Morey-Holton ER, Bikle DD (1999) Skeletal unloading causes resistance of osteoprogenitor cells to parathyroid hormone and to insulin-like growth factor-I. J Bone Miner Res 14:21–31

    Article  CAS  PubMed  Google Scholar 

  25. Sakata T, Wang Y, Halloran BP, Elalieh HZ, Cao J, Bikle DD (2004) Skeletal unloading induces resistance to insulin-like growth factor-I (IGF-I) by inhibiting activation of the IGF-I signaling pathways. J Bone Miner Res 19:436–446

    Article  CAS  PubMed  Google Scholar 

  26. Boudignon BM, Bikle DD, Kurimoto P, Elalieh H, Nishida S, Wang Y, Burghardt A, Majumdar S, Orwoll BE, Rosen C, Halloran BP (2007) Insulin-like growth factor I stimulates recovery of bone lost after a period of skeletal unloading. J Appl Physiol 103:125–131

    Article  CAS  PubMed  Google Scholar 

  27. Kawai M, Rosen CJ (2009) Insulin-like growth factor-I and bone: lessons from mice and men. Pediatr Nephrol 24:1277–1285

    Article  PubMed  Google Scholar 

  28. Burgering BM, Coffer PJ (1995) Protein kinase B (c-Akt) in phosphatidylinositol-3-OH kinase signal transduction. Nature 376:599–602

    Article  CAS  PubMed  Google Scholar 

  29. Coffer PJ, Woodgett JR (1991) Molecular cloning and characterisation of a novel putative protein-serine kinase related to the cAMP-dependent and protein kinase C families. Eur J Biochem 201:475–481

    Article  CAS  PubMed  Google Scholar 

  30. Zhang W, Shen X, Wan C, Zhao Q, Zhang L, Zhou Q, Deng L (2012) Effects of insulin and insulin-like growth factor 1 on osteoblast proliferation and differentiation: differential signalling via Akt and ERK. Cell Biochem Funct 30:297–302

    Article  CAS  PubMed  Google Scholar 

  31. Coffer PJ, Jin J, Woodgett JR (1998) Protein kinase B (c-Akt): a multifunctional mediator of phosphatidylinositol 3-kinase activation. Biochem J 335(Pt 1):1–13

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Kawamura N, Kugimiya F, Oshima Y, Ohba S, Ikeda T, Saito T, Shinoda Y, Kawasaki Y, Ogata N, Hoshi K, Akiyama T, Chen WS, Hay N, Tobe K, Kadowaki T, Azuma Y, Tanaka S, Nakamura K, Chung UI, Kawaguchi H (2007) Akt1 in osteoblasts and osteoclasts controls bone remodeling. PLoS ONE 2:e1058

    Article  PubMed  PubMed Central  Google Scholar 

  33. Sakamoto K, Aschenbach WG, Hirshman MF, Goodyear LJ (2003) Akt signaling in skeletal muscle: regulation by exercise and passive stretch. Am J Physiol Endocrinol Metab 285:E1081–E1088

    CAS  PubMed  Google Scholar 

  34. Skerry TM, Suva LJ (2003) Investigation of the regulation of bone mass by mechanical loading: from quantitative cytochemistry to gene array. Cell Biochem Funct 21:223–229

    Article  CAS  PubMed  Google Scholar 

  35. Niehoff A, Offermann M, Dargel J, Schmidt A, Bruggemann GP, Bloch W (2008) Dynamic and static mechanical compression affects Akt phosphorylation in porcine patellofemoral joint cartilage. J Orthop Res 26:616–623

    Article  CAS  PubMed  Google Scholar 

  36. Schmitz M, Niehoff A, Miosge N, Smyth N, Paulsson M, Zaucke F (2008) Transgenic mice expressing D469Delta mutated cartilage oligomeric matrix protein (COMP) show growth plate abnormalities and sternal malformations. Matrix Biol 27:67–85

    Article  CAS  PubMed  Google Scholar 

  37. Turner CH, Burr DB (1993) Basic biomechanical measurements of bone: a tutorial. Bone 14:595–608

    Article  CAS  PubMed  Google Scholar 

  38. Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR (1987) Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 2:595–610

    Article  CAS  PubMed  Google Scholar 

  39. Ausk BJ, Huber P, Poliachik SL, Bain SD, Srinivasan S, Gross TS (2012) Cortical bone resorption following muscle paralysis is spatially heterogeneous. Bone 50:14–22

    Article  PubMed  PubMed Central  Google Scholar 

  40. Aliprantis AO, Stolina M, Kostenuik PJ, Poliachik SL, Warner SE, Bain SD, Gross TS (2012) Transient muscle paralysis degrades bone via rapid osteoclastogenesis. FASEB J 26:1110–1118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rubin C, Xu G, Judex S (2001) The anabolic activity of bone tissue, suppressed by disuse, is normalized by brief exposure to extremely low-magnitude mechanical stimuli. FASEB J 15:2225–2229

    Article  CAS  PubMed  Google Scholar 

  42. Rubin C, Turner AS, Bain S, Mallinckrodt C, McLeod K (2001) Anabolism. Low mechanical signals strengthen long bones. Nature 412:603–604

    Article  CAS  PubMed  Google Scholar 

  43. Garman R, Gaudette G, Donahue LR, Rubin C, Judex S (2007) Low-level accelerations applied in the absence of weight bearing can enhance trabecular bone formation. J Orthop Res 25:732–740

    Article  PubMed  Google Scholar 

  44. Sakata T, Halloran BP, Elalieh HZ, Munson SJ, Rudner L, Venton L, Ginzinger D, Rosen CJ, Bikle DD (2003) Skeletal unloading induces resistance to insulin-like growth factor I on bone formation. Bone 32:669–680

    Article  CAS  PubMed  Google Scholar 

  45. Long RK, Nishida S, Kubota T, Wang Y, Sakata T, Elalieh HZ, Halloran BP, Bikle DD (2011) Skeletal unloading-induced insulin-like growth factor 1 (IGF-1) nonresponsiveness is not shared by platelet-derived growth factor: the selective role of integrins in IGF-1 signaling. J Bone Miner Res 26:2948–2958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The study was supported by Ipsen Pharma and Novotec Medical. Its sponsors had no involvement in the study design, collection, analysis, and interpretation of data; in the writing of the manuscript; or in the decision to submit the manuscript for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anja Niehoff.

Additional information

ES participates in advisory boards and gives presentations for different companies. Besides, none of the authors has anything to disclose for this manuscript and there are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niehoff, A., Lechner, P., Ratiu, O. et al. Effect of Whole-Body Vibration and Insulin-Like Growth Factor-I on Muscle Paralysis-Induced Bone Degeneration after Botulinum Toxin Injection in Mice. Calcif Tissue Int 94, 373–383 (2014). https://doi.org/10.1007/s00223-013-9818-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-013-9818-3

Keywords

Navigation