Skip to main content

Advertisement

Log in

Comparable Effects of Alendronate and Strontium Ranelate on Femur in Ovariectomized Rats

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

This study compared the effects of alendronate (ALN) and strontium ranelate (SR) on bone mineral density (BMD), bone histomorphometry, and biomechanics in ovariectomized (OVX) rats. We randomly assigned 48 3-month-old female Sprague–Dawley rats to four groups: sham, OVX, ALN, and SR. Rats in the OVX, ALN, and SR groups received bilateral OVX. Rats in the ALN and SR groups were orally administrated ALN (7 mg/kg/week) and SR (500 mg/kg/day). Rats in the sham and OVX groups were treated with saline. All treatments continued for 12 weeks. Femoral BMD examination, distal femoral bone histomorphometry analysis, and biomechanical tests at the femoral diaphysis and metaphysis were performed to evaluate the effects of treatments in OVX rats. Results showed that both ALN and SR significantly increased femoral BMD (total femur, diaphyseal BMD, and distal metaphyseal BMD), distal femoral bone histomorphometric parameters (BV/TV, Tb.N, and Tb.Th), and femoral biomechanical parameters (maximum load, failure load, stiffness) compared with the OVX group (P < 0.05). No differences were found between ALN and SR in increasing femoral BMD, distal femoral bone histomorphometric parameters (BV/TV, Tb.N, and Tb.Th), and femoral diaphysis biomechanical parameters (maximum load, failure load, stiffness) (P > 0.05). The SR group was inferior to the ALN group in femoral metaphysis biomechanical parameters (P < 0.05). In conclusion, ALN (7 mg/kg/week) and SR (500 mg/kg/day) have similar effects by increasing BMD, distal femoral bone histomorphometric parameters, and femoral metaphysis biomechanical properties. Although ALN has greater effects than SR on distal femoral metaphysis biomechanical properties, in general, ALN and SR have comparable effects on the femur in OVX rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Rachner TD, Khosla S, Hofbauer LC (2011) Osteoporosis: now and the future. Lancet 377:1276–1287

    Article  PubMed  CAS  Google Scholar 

  2. Iacono MV (2007) Osteoporosis: a national public health priority. J Perianesth Nurs 22(3):175–182

    Article  PubMed  Google Scholar 

  3. North American Menopause Society (2010) Management of osteoporosis in postmenopausal women: 2010 position statement of the North American Menopause Society. Menopause 17(1):25–54

    Article  Google Scholar 

  4. Christenson ES, Jiang X, Kagan R, Schnatz P (2012) Osteoporosis management in post-menopausal women. Minerva Ginecol 64(3):181–194

    PubMed  CAS  Google Scholar 

  5. Kimmel DB (2007) Mechanism of action, pharmacokinetic and pharmacodynamic profile, and clinical applications of nitrogen-containing bisphosphonates. J Dent Res 86(11):1022–1033

    Article  PubMed  CAS  Google Scholar 

  6. Bone HG, Hosking D, Devogelaer JP, Tucci JR, Emkey RD, Tonino RP, Rodriguez-Portales JA, Downs RW, Gupta J, Santora AC, Liberman UA; Alendronate Phase III Osteoporosis Treatment Study Group (2004) Ten years’ experience with alendronate for osteoporosis in postmenopausal women. N Engl J Med 350:1189–1199

    Article  Google Scholar 

  7. Rosen CJ, Hochberg MC, Bonnick SL, McClung M, Miller P, Broy S, Kagan R, Chen E, Petruschke RA, Thompson DE, de Papp AE; Fosamax Actonel Comparison Trial Investigators (2005) Treatment with once-weekly alendronate 70 mg compared with once-weekly risedronate 35 mg in women with postmenopausal osteoporosis: a randomized double-blind study. J Bone Miner Res 20(1):141–151

    Article  Google Scholar 

  8. Donaldson MG, Palermo L, Ensrud KE, Hochberg MC, Schousboe JT, Cummings SR (2012) Effect of alendronate for reducing fracture by FRAX score and femoral neck bone mineral density: the fracture intervention trial. J Bone Miner Res 27(8):1804–1810

    Article  PubMed  CAS  Google Scholar 

  9. Hagino H, Nishizawa Y, Sone T, Morii H, Taketani Y, Nakamura T, Itabashi A, Mizunuma H, Ohashi Y, Shiraki M, Minamide T, Matsumoto T (2009) A double-blinded head-to-head trial of minodronate and alendronate in women with postmenopausal osteoporosis. Bone 44(6):1078–1084

    Article  PubMed  CAS  Google Scholar 

  10. Reginster JY (2002) Strontium ranelate in osteoporosis. Curr Pharm Des 8(21):1907–1916

    Article  PubMed  CAS  Google Scholar 

  11. Marie PJ (2005) Strontium ranelate: a novel mode of action optimizing bone formation and resorption. Osteoporos Int 16(Suppl 1):S7–S10

    Article  PubMed  CAS  Google Scholar 

  12. Bonnelye E, Chabadel A, Saltel F, Jurdic P (2008) Dual effect of strontium ranelate: stimulation of osteoblast differentiation and inhibition of osteoclast formation and resorption in vitro. Bone 42(1):129–138

    Article  PubMed  CAS  Google Scholar 

  13. Ma YL, Zeng QQ, Porras LL, Harvey A, Moore TL, Shelbourn TL, Dalsky GP, Wronski TJ, Aguirre JI, Bryant HU, Sato M (2011) Teriparatide [rhPTH(1–34)], but not strontium ranelate, demonstrated bone anabolic efficacy in mature, osteopenic, ovariectomized rats. Endocrinology 152(5):1767–1778

    Article  PubMed  CAS  Google Scholar 

  14. Fuchs RK, Allen MR, Condon KW, Reinwald S, Miller LM, McClenathan D, Keck B, Phipps RJ, Burr DB (2008) Strontium ranelate does not stimulate bone formation in ovariectomized rats. Osteoporos Int 19(9):1331–1341

    Article  PubMed  CAS  Google Scholar 

  15. Chattopadhyay N, Quinn SJ, Kifor O, Ye C, Brown EM (2007) The calcium-sensing receptor (CaR) is involved in strontium ranelate–induced osteoblast proliferation. Biochem Pharmacol 74(3):438–447

    Article  PubMed  CAS  Google Scholar 

  16. Caverzasio J (2008) Strontium ranelate promotes osteoblast cell replication through at least two different mechanisms. Bone 42(6):1131–1136

    Article  PubMed  CAS  Google Scholar 

  17. Pi M, Quarles LD (2004) A novel cation-sensing mechanism in osteoblasts is a molecular target for strontium. J Bone Miner Res 19(5):862–869

    Article  PubMed  CAS  Google Scholar 

  18. Atkins GJ, Welldon KJ, Halbout P, Findlay DM (2009) Strontium ranelate treatment of primary osteoblasts promotes an osteocyte-like phenotype while eliciting an osteoprotegerin response. Osteoporos Int 20:653–664

    Article  PubMed  CAS  Google Scholar 

  19. Brennan TC, Rybchyn MS, Green W, Atwa S, Conigrave AD, Mason RS (2009) Osteoblasts play key roles in the mechanisms of action of strontium ranelate. Br J Pharmacol 157(7):1291–1300

    Article  PubMed  CAS  Google Scholar 

  20. Meunier PJ, Roux C, Seeman E, Ortolani S, Badurski JE, Spector TD, Cannata J, Balogh A, Lemmel EM, Pors-Nielsen S, Rizzoli R, Genant HK, Reginster JY (2004) The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis. N Engl J Med 350(5):459–468

    Article  PubMed  CAS  Google Scholar 

  21. Reginster JY, Seeman E, De Vernejoul MC, Adami S, Compston J, Phenekos C, Devogelaer JP, Curiel MD, Sawicki A, Goemaere S, Sorensen OH, Felsenberg D, Meunier PJ (2005) Strontium ranelate reduces the risk of nonvertebral fractures in postmenopausal women with osteoporosis: treatment of peripheral osteoporosis (TROPOS) study. J Clin Endocrinol Metab 90(5):2816–2822

    Article  PubMed  CAS  Google Scholar 

  22. Kanis JA, Johansson H, Oden A, McCloskey EV (2011) A meta-analysis of the effect of strontium ranelate on the risk of vertebral and nonvertebral fracture in postmenopausal osteoporosis and the interaction with FRAX®. Osteoporos Int 22(8):2347–2355

    Article  PubMed  CAS  Google Scholar 

  23. Liu JM, Wai-Chee Kung A, Pheng CS, Zhu HM, Zhang ZL, Wu YY, Xu L, Meng XW, Huang ML, Chung LP, Hussain NH, Sufian SS, Chen JL (2009) Efficacy and safety of 2 g/day of strontium ranelate in Asian women with postmenopausal osteoporosis. Bone 45(3):460–465

    Article  PubMed  CAS  Google Scholar 

  24. Rizzoli R, Laroche M, Krieg MA, Frieling I, Thomas T, Delmas P, Felsenberg D (2010) Strontium ranelate and alendronate have differing effects on distal tibia bone microstructure in women with osteoporosis. Rheumatol Int 30(10):1341–1348

    Article  PubMed  CAS  Google Scholar 

  25. Rizzoli R, Chapurlat RD, Laroche JM, Krieg MA, Thomas T, Frieling I, Boutroy S, Laib A, Bock O, Felsenberg D (2012) Effects of strontium ranelate and alendronate on bone microstructure in women with osteoporosis. Results of a 2-year study. Osteoporos Int 23(1):305–315

    Article  PubMed  CAS  Google Scholar 

  26. Sun P, Cai DH, Li QN, Chen H, Deng WM, He L, Yang L (2010) Effects of alendronate and strontium ranelate on cancellous and cortical bone mass in glucocorticoid-treated adult rats. Calcif Tissue Int 86(6):495–501

    Article  PubMed  CAS  Google Scholar 

  27. National Research Council, Committee for the Update of the Guide for the Care and Use of Laboratory Animals (2011) Guide for the care and use of laboratory animals, 8th edn. National Academies, USA

    Google Scholar 

  28. Chen BL, Li YQ, Xie DH, Yang XX (2012) Low-magnitude high-frequency loading via whole body vibration enhances bone implant osseointegration in ovariectomized rats. J Orthop Res 30(5):733–739

    Article  PubMed  Google Scholar 

  29. Chen B, Li Y, Yang X, Xie D (2012) Femoral metaphysis bending test of rat: introduction and validation of a novel biomechanical testing protocol for osteoporosis. J Orthop Sci 17(1):70–76

    Article  PubMed  Google Scholar 

  30. Sliwiński L, Janiec W, Pytlik M, Folwarczna J, Kaczmarczyk-Sedlak I, Pytlik W, Cegieła U, Nowińska B (2004) Effect of administration of alendronate sodium and retinol on the mechanical properties of the femur in ovariectomized rats. Pol J Pharmacol 56(6):817–824

    PubMed  Google Scholar 

  31. Seedor JG, Quartuccio HA, Thompson DD (1991) The bisphosphonate alendronate (MK-217) inhibits bone loss due to ovariectomy in rats. Bone Miner Res 6(4):339–346

    Article  CAS  Google Scholar 

  32. Wang Y, Huang P, Tang PF, Chan KM, Li G (2011) Alendronate (ALN) combined with osteoprotegerin (OPG) significantly improves mechanical properties of long bone than the single use of ALN or OPG in the ovariectomized rats. J Orthop Surg Res 6:34

    Article  PubMed  Google Scholar 

  33. Ahmet-Camcioglu N, Okman-Kilic T, Durmus-Altun G, Ekuklu G, Kucuk M (2009) Effects of strontium ranelate, raloxifene and misoprostol on bone mineral density in ovariectomized rats. Eur J Obstet Gynecol Reprod Biol 147(2):192–194

    Article  PubMed  CAS  Google Scholar 

  34. Bain SD, Jerome C, Shen V, Dupin-Roger I, Ammann P (2009) Strontium ranelate improves bone strength in ovariectomized rat by positively influencing bone resistance determinants. Osteoporos Int 20(8):1417–1428

    Article  PubMed  CAS  Google Scholar 

  35. Ulrich U, Miller P, Eyre D, Chesnut CR, Schlebusch H, Soules M (2003) Bone remodeling and bone mineral density during pregnancy. Arch Gynecol Obstet 268:309–316

    Article  PubMed  CAS  Google Scholar 

  36. Chachra D, Lee JM, Kasra M, Grynpas MD (2000) Differential effects of ovariectomy on the mechanical properties of cortical and cancellous bone in rat femora and vertebrae. Biomed Sci Instrum 36:123–128

    PubMed  CAS  Google Scholar 

  37. Thongchote K, Charoenphandhu N, Krishnamra N (2008) High physiological prolactin induced by pituitary transplantation decreases BMD and BMC in the femoral metaphysis, but not in the diaphysis of adult female rats. J Physiol Sci 58:39–45

    Article  PubMed  CAS  Google Scholar 

  38. Yaffe A, Kollerman R, Bahar H, Binderman I (2003) The influence of alendronate on bone formation and resorption in a rat ectopic bone development model. J Periodontol 74(1):44–50

    Article  PubMed  CAS  Google Scholar 

  39. Nijenhuis T, van der Eerden BC, Hoenderop JG, Weinans H, van Leeuwen JP, Bindels RJ (2008) Bone resorption inhibitor alendronate normalizes the reduced bone thickness of TRPV5−/− mice. J Bone Miner Res 23(11):1815–1824

    Article  PubMed  CAS  Google Scholar 

  40. Licata AA (1997) Bisphosphonate therapy. Am J Med Sci 313(1):17–22

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by the Guangdong Provincial Science and Technology Foundation in 2007 (NO2007B312004). The histological examination was conducted in The Center for New Drug Function Research, School of Life Science and Biopharmacology, Guangdong Pharmaceutical University. We thank Prof. QingNan Li for help with the histological examination. Biomechanical testing was conducted in the Orthopedic Research Center of the First Affiliated Hospital of Sun Yat-sen University, and we thank JianWei Chen for help with it.

Conflict of interest

The authors have stated that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to BaiLing Chen.

Additional information

BaiLing Chen and YiQiang Li have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, B., Li, Y., Yang, X. et al. Comparable Effects of Alendronate and Strontium Ranelate on Femur in Ovariectomized Rats. Calcif Tissue Int 93, 481–486 (2013). https://doi.org/10.1007/s00223-013-9765-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-013-9765-z

Keywords

Navigation