Skip to main content

Advertisement

Log in

Tools in the Assessment of Sarcopenia

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

This review provides a framework for the development of an operational definition of sarcopenia and of the potential end points that might be adopted in clinical trials among older adults. While the clinical relevance of sarcopenia is widely recognized, there is currently no universally accepted definition of the disorder. The development of interventions to alter the natural history of sarcopenia also requires consensus on the most appropriate end points for determining outcomes of clinical importance which might be utilized in intervention studies. We review current approaches to the definition of sarcopenia and the methods used for the assessment of various aspects of physical function in older people. The potential end points of muscle mass, muscle strength, muscle power, and muscle fatigue, as well as the relationships between them, are explored with reference to the availability and practicality of the available methods for measuring these end points in clinical trials. Based on current evidence, none of the four potential outcomes in question is sufficiently comprehensive to recommend as a uniform single outcome in randomized clinical trials. We propose that sarcopenia may be optimally defined (for the purposes of clinical trial inclusion criteria as well as epidemiological studies) using a combination of measures of muscle mass and physical performance. The choice of outcome measures for clinical trials in sarcopenia is more difficult; co-primary outcomes, tailored to the specific intervention in question, may be the best way forward in this difficult but clinically important area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Frontera WR, Hughes VA, Fielding RA, Fiatarone MA, Evans WJ, Roubenoff R (2000) Aging of skeletal muscle: a 12-year longitudinal study. J Appl Physiol 88:1321–1326

    PubMed  CAS  Google Scholar 

  2. Lexell J, Taylor CC, Sjöström M (1988) What is the cause of the ageing atrophy? Total number, size and proportion of different fiber types studied in whole vastuslateralis muscle from 15- to 83-year-old men. J Neurol Sci 84:275–294

    Article  PubMed  CAS  Google Scholar 

  3. Newman AB, Kupelian V, Visser M, Simonsick E, Goodpaster B, Nevitt M et al, Health ABC Study Investigators (2003) Sarcopenia: alternative definitions and associations with lower extremity function. J Am Geriatr Soc 51:1602–1609

    Google Scholar 

  4. Doherty TJ (2003) Invited review. Aging and sarcopenia. J Appl Physiol 95:1717–1727

    PubMed  CAS  Google Scholar 

  5. Rolland YM, Perry HM 3rd, Patrick P, Banks WA, Morley JE (2007) Loss of appendicular muscle mass and loss of muscle strength in young postmenopausal women. J Gerontol A Biol Sci Med Sci 62:330–335

    Article  PubMed  Google Scholar 

  6. Fielding RA, Vellas B, Evans WJ, Bhasin S, Morley JE, Newman AB et al (2011) Sarcopenia: an undiagnosed condition in older adults. Current consensus definition: prevalence, etiology, and consequences. International Working Group on Sarcopenia. J Am Med Dir Assoc 12:249–256

    Article  PubMed  Google Scholar 

  7. Consensus Development Conference (1993) Diagnosis, prophylaxis, and treatment of osteoporosis. Am J Med 94:646–650

    Article  Google Scholar 

  8. World Health Organisation (1998) Guidelines for preclinical evaluation and clinical trials in osteoporosis. WHO, Geneva

    Google Scholar 

  9. Baumgartner RN, Koehler KM, Gallagher D, Romero L, Heymsfield SB, Ross RR et al (1998) Epidemiology of sarcopenia among the elderly in New Mexico. Am J Epidemiol 147:755–763

    Article  PubMed  CAS  Google Scholar 

  10. Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F et al (2010) Sarcopenia: European consensus on definition and diagnosis. Report of the European Working Group on Sarcopenia in Older People. Age Ageing 39:412–423

    Article  PubMed  Google Scholar 

  11. Morley JE, Abbatecola AM, Argiles JM, Baracos V, Bauer J, Bhasin S et al (2011) Sarcopenia with limited mobility: an international consensus. J Am Med Dir Assoc 12:403–409

    Article  PubMed  Google Scholar 

  12. Muscaritoli M, Anker SD, Argilés J, Aversa Z, Bauer JM, Biolo G et al (2010) Consensus definition of sarcopenia, cachexia and pre-cachexia: joint document elaborated by special interest groups (SIG) “cachexia-anorexia in chronic wasting diseases” and “nutrition in geriatrics”. Clin Nutr 29:154–159

    Article  PubMed  CAS  Google Scholar 

  13. Studenski S (2013) Evidence based criteria for sarcopenia with clinically important weakness. Semin Arthritis Rheum 42:447–449

    Article  PubMed  Google Scholar 

  14. Manini TM, Clark BC (2012) Dynapenia and aging: an update. J Gerontol A Biol Sci Med Sci 67:28–40

    Article  PubMed  Google Scholar 

  15. Cooper R, Kuh D, Hardy R; Mortality Review Group; FALCon and HALCyon Study Teams (2010) Objectively measured physical capability levels and mortality: systematic review and meta-analysis. BMJ 341:c4467

    Google Scholar 

  16. Bergman H, Ferrucci L, Guralnik J, Hogan DB, Hummel S, Karunananthan S, Wolfson C (2007) Frailty: an emerging research and clinical paradigm—issues and controversies. J Gerontol A Biol Sci Med Sci 62:731–737

    Article  PubMed  Google Scholar 

  17. Studenski S, Perera S, Patel K, Rosano C, Faulkner K, Inzitari M et al (2011) Gait speed and survival in older adults. JAMA 305:50–58

    Article  PubMed  CAS  Google Scholar 

  18. National Institute on Aging (2012) Assessing physical performance in the older patient. www.grc.nia.nih.gov/branches/ledb/sppb. Accessed 21 Feb 2012

  19. Guralnik JM, Simonsick EM, Ferrucci L, Glynn RJ, Berkman LF, Blazer DG et al (1994) A short physical performance battery assessing lower extremity function: association with self-reported disability and prediction of mortality and nursing home admission. J Gerontol 49:M85–M94

    Article  PubMed  CAS  Google Scholar 

  20. Guralnik JM, Ferrucci L, Simonsick EM, Salive ME, Wallace RB (1995) Lower-extremity function in persons over the age of 70 years as a predictor of subsequent disability. N Engl J Med 332:556–561

    Article  PubMed  CAS  Google Scholar 

  21. Guralnik JM, Ferrucci L, Pieper CF, Leveille SG, Markides KS, Ostir GV et al (2000) Lower extremity function and subsequent disability: consistency across studies, predictive models, and value of gait speed alone compared with the short physical performance battery. J Gerontol A Biol Sci Med Sci 55:M221–M231

    Article  PubMed  CAS  Google Scholar 

  22. LIFE Study Investigators (2006) Effects of a physical activity intervention on measures of physical performance: results of the Lifestyle Interventions and Independence for Elder Pilot (LIFE-P) Study. J Gerontol A Biol Sci Med Sci 61:1157–1165

    Article  Google Scholar 

  23. Vasunilashorn S, Coppin AK, Patel KV, Lauretani F, Ferrucci L, Bandinelli S, Guralnik JM (2009) Use of the short physical performance battery score to predict loss of ability to walk 400 meters: analysis from the InCHIANTI study. J Gerontol A Biol Sci Med Sci 4:223–229

    Article  Google Scholar 

  24. LeBrasseur NK, Walsh K, Arany Z (2011) Metabolic benefits of resistance training and fast glycolytic skeletal muscle. Am J Physiol Endocrinol Metab 300:E3–E10

    Article  PubMed  CAS  Google Scholar 

  25. Wittert GA, Chapman IM, Haren MT, Mackintosh S, Coates P, Morley JE (2003) Oral testosterone supplementation increases muscle and decreases fat mass in health elderly males with low-normal gonadal status. J Gerontol A Biol Sci Med Sci 58:618–625

    Article  PubMed  Google Scholar 

  26. Haguenauer D, Welch V, Shea B, Tugwell P, Wells G (2000) Fluoride for treating postmenopausal osteoporosis. Cochrane Database Syst Rev 4:CD002825

    PubMed  Google Scholar 

  27. Verdijk LB, Snijders T, Beelen M, Savelberg HH, Meijer K, Kuipers H, Van Loon LJ (2010) Characteristics of muscle fiber type are predictive of skeletal muscle mass and strength in elderly men. J Am Geriatr Soc 58:2069–2075

    Article  PubMed  Google Scholar 

  28. Goodpaster BH, Park SW, Harris TB, Kritchevsky SB, Nevitt M, Schwartz AV et al (2006) The loss of skeletal muscle strength, mass, and quality in older adults: the Health, Aging and Body Composition Study. J Gerontol A Biol Sci Med Sci 61:1059–1064

    Article  PubMed  Google Scholar 

  29. Newman AB, Kupelian V, Visser M, Simonsick EM, Goodpaster BH, Kritchevsky SB et al (2006) Strength, but not muscle mass, is associated with mortality in the Health, Aging and Body Composition Study cohort. J Gerontol A Biol Sci Med Sci 61:72–77

    Article  PubMed  Google Scholar 

  30. Reid KF, Fielding RA (2012) Skeletal muscle power: a critical determinant of physical functioning in older adults. Exercise Sport Sci Rev 40:4–12

    Article  Google Scholar 

  31. Reid KF, Callahan DM, Carabello RJ, Phillips EM, Frontera WR, Fielding RA (2008) Lower extremity power training in elderly subjects with mobility limitations: a randomized controlled trial. Aging Clin Exp Res 20:337–343

    Article  PubMed  Google Scholar 

  32. Vøllestad NK (1997) Measurement of human muscle fatigue. J Neurosci Methods 74:219–227

    Article  PubMed  Google Scholar 

  33. Woodrow G (2009) Body composition analysis techniques in the aged adult: indications and limitations. Curr Opin Clin Nutr Metab Care 12:8–14

    Article  PubMed  Google Scholar 

  34. Lustgarten MS, Fielding RA (2011) Assessment of analytical methods used to measure changes in body composition in the elderly and recommendations for their use in phase II clinical trials. J Nutr Health Aging 15:368–375

    Article  PubMed  CAS  Google Scholar 

  35. Janssen I, Heymsfield SB, Baumgartner RN, Ross R (2000) Estimation of skeletal muscle mass by bioelectrical impedance analysis. J Appl Physiol 89:465–471

    PubMed  CAS  Google Scholar 

  36. Kyle UG, Genton L, Hans D, Pichard C (2003) Validation of a bioelectrical impedance analysis equation to predict appendicular skeletal muscle mass (ASMM). Clin Nutr 22:537–543

    Article  PubMed  CAS  Google Scholar 

  37. Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, Gómez JM et al (2004) Bioelectrical impedance analysis—part I: review of principles and methods. Clin Nutr 23:1226–1243

    Article  PubMed  Google Scholar 

  38. Fields DA, Goran MI, McCrory MA (2002) Body-composition assessment via air-displacement plethysmography in adults and children: a review. Am J Clin Nutr 75:453–467

    PubMed  CAS  Google Scholar 

  39. Plank LD (2005) Dual-energy X-ray absorptiometry and body composition. Curr Opin Clin Nutr Metab Care 8:305–309

    Article  PubMed  Google Scholar 

  40. Hansen RD, Williamson DA, Finnegan TP, Lloyd BD, Grady JN, Diamond TH et al (2007) Estimation of thigh muscle cross-sectional area by dual-energy X-ray absorptiometry in frail elderly patients. Am J Clin Nutr 86:952–958

    PubMed  CAS  Google Scholar 

  41. Marin D, Nelson RC, Rubin GD, Schindera ST (2011) Body CT: technical advances for improving safety. AJR Am J Roentgenol 197:33–41

    Article  PubMed  Google Scholar 

  42. Chen Z, Wang Z, Lohman T, Heymsfield SB, Outwater E, Nicholas JS et al (2007) Dual-energy X-ray absorptiometry is a valid tool for assessing skeletal muscle mass in older women. J Nutr 137:2775–2780

    PubMed  CAS  Google Scholar 

  43. Delmonico MJ, Kostek MC, Johns J, Hurley BF, Conway JM (2008) Can dual energy X-ray absorptiometry provide a valid assessment of changes in thigh muscle mass with strength training in older adults? Eur J Clin Nutr 62:1372–1378

    Article  PubMed  CAS  Google Scholar 

  44. Verdijk LB, van Loon L, Meijer K, Savelberg HH (2009) One-repetition maximum strength test represents a valid means to assess leg strength in vivo in humans. J Sports Sci 27:59–68

    Article  PubMed  Google Scholar 

  45. Mayhew JL, Prinster JL, Ware JS, Zimmer DL, Arabas JR, Bemben MG (1995) Muscular endurance repetitions to predict bench press strength in men of different training levels. J Sports Med Phys Fitness 35:108–113

    PubMed  CAS  Google Scholar 

  46. Bohannon RW (2008) Hand-grip dynamometry predicts future outcomes in aging adults. J Geriatr Phys Ther 31:3–10

    Article  PubMed  Google Scholar 

  47. Rantanen T (2003) Muscle strength, disability and mortality. Scand J Med Sci Sports 13:3–8

    Article  PubMed  CAS  Google Scholar 

  48. Roberts HC, Denison HJ, Martin HJ, Patel HP, Syddall H, Cooper C et al (2011) A review of the measurement of grip strength in clinical and epidemiological studies: towards a standardised approach. Age Ageing 40:423–429

    Article  PubMed  Google Scholar 

  49. Aadahl M, Beyer N, Linneberg A, Thuesen BH, Jørgensen T (2011) Grip strength and lower limb extension power in 19–72-year-old Danish men and women: the Health 2006 study. BMJ Open 1:e000192

    Article  PubMed  Google Scholar 

  50. Desrosiers J, Hébert R, Bravo G, Dutil E (1995) Comparison of the Jamar dynamometer and the Martin vigorimeter for grip strength measurements in a healthy elderly population. Scand J Rehabil Med 27:137–143

    PubMed  CAS  Google Scholar 

  51. Bean JF, Kiely DK, Herman S, Leveille SG, Mizer K, Frontera WR, Fielding RA (2002) The relationship between leg power and physical performance in mobility-limited older people. J Am Geriatr Soc 50:461–467

    Article  PubMed  Google Scholar 

  52. Foldvari M, Clark M, Laviolette LC, Bernstein MA, Kaliton D, Castaneda C, Pu CT, Hausdorff JM, Fielding RA, Singh MA (2000) Association of muscle power with functional status in community-dwelling elderly women. J Gerontol A Biol Sci Med Sci 55:M192–M199

    Article  PubMed  CAS  Google Scholar 

  53. Clark DJ, Patten C, Reid KF, Carabello RJ, Phillips EM, Fielding RA (2011) Muscle performance and physical function are associated with voluntary rate of neuromuscular activation in older adults. J Gerontol A Biol Sci Med Sci 66:115–121

    Article  PubMed  Google Scholar 

  54. Reeves ND, Narici MV, Maganaris CN (2006) Myotendinous plasticity to ageing and resistance exercise in humans. Exp Physiol 91:483–498

    Article  PubMed  CAS  Google Scholar 

  55. Roos MR, Rice CL, Connelly DM, Vandervoort AA (1999) Quadriceps muscle strength, contractile properties, and motor unit firing rates in young and old men. Muscle Nerve 22:1094–1103

    Article  PubMed  CAS  Google Scholar 

  56. Smith WN, Del Rossi G, Adams JB, Abderlarahman KZ, Asfour SA, Roos BA, Signorile JF (2010) Simple equations to predict concentric lower-body muscle power in older adults using the 30-second chair-rise test: a pilot study. Clin Interv Aging 5:173–180

    PubMed  Google Scholar 

  57. Fried LP, Tangen CM, Walston J, Newman AB, Hirsch C, Gottdiener J et al (2001) Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci 56:M146–M156

    Article  PubMed  CAS  Google Scholar 

  58. Rockwood K, Song X, MacKnight C, Bergman H, Hogan DB, McDowell I et al (2005) A global clinical measure of fitness and frailty in elderly people. CMAJ 173:489–495

    PubMed  Google Scholar 

  59. Rondelli RR, Dal Corso S, Simões A, Malaguit C (2009) Methods for the assessment of peripheral muscle fatigue and its energy and metabolic determinants in COPD. J Bras Pneumol 35:1125–1135

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This review was based on a workshop supported by the European Society for the Clinical and Economic Aspects of Osteoporosis and Osteoarthritis (ESCEO) and the International Osteoporosis Foundation (IOF). We are grateful to the NIHR Musculoskeletal Biomedical Research Unit, University of Oxford, and NIHR Nutrition Biomedical Research Unit, University of Southampton, UK.

Disclosures

C. C. has received consultancy fees/honoraria from Servier, Eli Lilly, Merck, Amgen, Novartis, GSK, Alliance, Medtronic; W. D. is an employee and stockholder of Amgen; W. E. is an employee of GlaxoSmithKline; B. M. is an employee and shareholder of Eli Lilly and Company; Y. T. is an employee of Servier. Y. R. has spoken for and prepared an education module with Nutricia and is on the expert board of Cheisi and Lactalis. S. B. was senior clinical investigator of the Fund for Scientific Research, Flanders, Belgium, and holder of the Leuven University Chair in Gerontology and Geriatrics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Cooper.

Additional information

S. Boonen—deceased.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cooper, C., Fielding, R., Visser, M. et al. Tools in the Assessment of Sarcopenia. Calcif Tissue Int 93, 201–210 (2013). https://doi.org/10.1007/s00223-013-9757-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-013-9757-z

Keywords

Navigation