Skip to main content

Advertisement

Log in

Citrate Occurs Widely in Healthy and Pathological Apatitic Biomineral: Mineralized Articular Cartilage, and Intimal Atherosclerotic Plaque and Apatitic Kidney Stones

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

There is continuing debate about whether abundant citrate plays an active role in biomineralization of bone. Using solid state NMR dipolar dephasing, we examined another normally mineralized hard tissue, mineralized articular cartilage, as well as biocalcifications arising in pathological conditions, mineralized intimal atherosclerotic vascular plaque, and apatitic uroliths (urinary stones). Residual nondephasing 13C NMR signal at 76 ppm in the spectra of mineralized cartilage and vascular plaque indicates that a quaternary carbon atom resonates at this frequency, consistent with the presence of citrate. The presence, and as yet unproven possible mechanistic involvement, of citrate in tissue mineralization extends the compositional, structural, biogenetic, and cytological similarities between these tissues and bone itself. Out of 10 apatitic kidney stones, five contained NMR-detectable citrate. Finding citrate in a high proportion of uroliths may be significant in view of the use of citrate in urolithiasis therapy and prophylaxis. Citrate may be essential for normal biomineralization (e.g., of cartilage), play a modulatory role in vascular calcification which could be a target for therapeutic intervention, and drive the formation of apatitic rather than other calcific uroliths, including more therapeutically intractable forms of calcium phosphate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dickens F (1941) The citric acid content of animal tissues with reference to its occurrence in bone and tumour. Biochem J 35:1011–1023

    PubMed  CAS  Google Scholar 

  2. Taylor TG (1960) The nature of bone citrate. Biochim Biophys Acta 39:148–149

    Article  PubMed  CAS  Google Scholar 

  3. Huggins C, Bear RS (1944) The course of the prostatic ducts and the anatomy, chemical and X-ray diffraction analysis of prostatic calculi. J Urol 51:37–47

    CAS  Google Scholar 

  4. Hu YY, Rawal A, Schmidt-Rohr K (2010) Strongly bound citrate stabilizes the apatite nanocrystals in bone. Proc Natl Acad Sci USA 107:22425–22429

    Article  PubMed  CAS  Google Scholar 

  5. Lopez-Macipe A, Gomez-Morales J, Rodriguez-Clemente R (1998) Nanosized hydroxyapatite precipitation from homogeneous calcium/citrate/phosphate solutions using microwave and conventional heating. Adv Mater 10:49–53

    Article  CAS  Google Scholar 

  6. Lopez-Macipe A, Gomez-Morales J, Rodriguez-Clemente R (1998) The role of pH in the adsorption of citrate ions on hydroxyapatite. J Colloid Interface Sci 200:114–120

    Article  CAS  Google Scholar 

  7. Schneiders W, Reinstorf A, Pompe W, Grass R, Biewener A, Holch M, Zwipp H, Rammelt S (2007) Effect of modification of hydroxyapatite/collagen composites with sodium citrate, phosphoserine, phosphoserine/RGD-peptide and calcium carbonate on bone remodelling. Bone 40:1048–1059

    Article  PubMed  CAS  Google Scholar 

  8. Rhee SH, Tanaka J (1999) Effect of citric acid on the nucleation of hydroxyapatite in a simulated body fluid. Biomaterials 20:2155–2160

    Article  PubMed  CAS  Google Scholar 

  9. Hu YY, Liu XP, Ma X, Rawal A, Prozorov T, Akinc M, Mallapragada SK, Schmidt-Rohr K (2011) Biomimetic self-assembling copolymer–hydroxyapatite nanocomposites with the nanocrystal size controlled by citrate. Chem Mater 23:2481–2490

    Article  CAS  Google Scholar 

  10. Johnsson MSA, Richardson CF, Sharma VK, Sallis JD, Nancollas GH (1990) Phosphocitrate and citrate effects on calcium–phosphate crystal-growth. J Dent Res 69:119

    Google Scholar 

  11. Sharma VK, Johnsson M, Sallis JD, Nancollas GH (1992) Influence of citrate and phosphocitrate on the crystallization of octacalcium phosphate. Langmuir 8:676–679

    Article  CAS  Google Scholar 

  12. Legeros RZ, Daculsi G, Orly I, Abergas T, Torres W (1989) Solution-mediated transformation of octacalcium phosphate (OCP) to apatite. Scanning Micros 3:129–138

    CAS  Google Scholar 

  13. Xie BQ, Nancollas GH (2010) How to control the size and morphology of apatite nanocrystals in bone. Proc Natl Acad Sci USA 107:22369–22370

    Article  PubMed  CAS  Google Scholar 

  14. Wu YJ, Tsai TWT, Chan JCC (2012) Asymmetric crystal morphology of apatite induced by the chirality of dicarboxylate additives. Cryst Growth Des 12:547–549

    Article  CAS  Google Scholar 

  15. Cheung HS, Kurup IV, Sallis JD, Ryan LM (1996) Inhibition of calcium pyrophosphate dihydrate crystal formation in articular cartilage vesicles and cartilage by phosphocitrate. J Biol Chem 271:28082–28085

    Article  PubMed  CAS  Google Scholar 

  16. Robinson MR, Leitao VA, Haleblian GE, Scales CD, Chandrashekar A, Pierre SA, Prerninger GM (2009) Impact of long-term potassium citrate therapy on urinary profiles and recurrent stone formation. J Urol 181:1145–1150

    Article  PubMed  Google Scholar 

  17. Greischar A, Nakagawa Y, Coe FL (2003) Influence of urine pH and citrate concentration on the upper limit of metastability for calcium phosphate. J Urol 169:867–870

    Article  PubMed  CAS  Google Scholar 

  18. Mattle D, Hess B (2005) Preventive treatment of nephrolithiasis with alkali citrate—a critical review. Urol Res 33:73–79

    Article  PubMed  CAS  Google Scholar 

  19. Delgado-Lopez JM, Iafisco M, Rodriguez I, Tampieri A, Prat M, Gomez-Morales J (2012) Crystallization of bioinspired citrate-functionalized nanoapatite with tailored carbonate content. Acta Biomater 8:3491–3499

    Article  PubMed  CAS  Google Scholar 

  20. Chow K, Dixon J, Gilpin S, Kavanagh JP, Rao PN (2004) Citrate inhibits growth of residual fragments in an in vitro model of calcium oxalate renal stones. Kidney Int 65:1724–1730

    Article  PubMed  CAS  Google Scholar 

  21. Bak M, Thomsen JK, Jakobsen HJ, Petersen SE, Petersen TE, Nielsen NC (2000) Solid-state 13C and 31P NMR analysis of urinary stones. J Urol 164:856–863

    Article  PubMed  CAS  Google Scholar 

  22. Duer MJ, Friscic T, Proudfoot D, Reid DG, Schoppet M, Shanahan CM, Skepper JN, Wise ER (2008) Mineral surface in calcified plaque is like that of bone: further evidence for regulated mineralization. Arterioscler Thromb Vasc Biol 28:2030–2034

    Article  PubMed  CAS  Google Scholar 

  23. Reid DG, Jackson GJ, Duer MJ, Rodgers AL (2011) Apatite in kidney stones is a molecular composite with glycosaminoglycans and proteins: evidence from nuclear magnetic resonance spectroscopy, and relevance to Randall’s plaque, pathogenesis and prophylaxis. J Urol 185:725–730

    Article  PubMed  CAS  Google Scholar 

  24. Bradley JV, Bridgland LN, Colyer DE, Duer MJ, Friščić T, Gallagher JR, Reid DG, Skepper JN, Trasler CM (2010) NMR of biopolymer–apatite composites: developing a model of the molecular structure of the mineral–matrix interface in calcium phosphate biomaterials. Chem Mater 22:6109–6116

    Article  CAS  Google Scholar 

  25. Duer MJ, Friscic T, Murray RC, Reid DG, Wise ER (2009) The mineral phase of calcified cartilage: its molecular structure and interface with the organic matrix. Biophys J 96:3372–3378

    Article  PubMed  CAS  Google Scholar 

  26. Reid DG, Shanahan CM, Duer MJ, Arroyo LG, Schoppet M, Brooks RA, Murray RC (2012) Lipids in biocalcification: contrasts and similarities between intimal and medial vascular calcification and bone by NMR. J Lipid Res 53:1569–1575

    Article  PubMed  CAS  Google Scholar 

  27. Motoyama S, Kondo T, Sarai M, Sugiura A, Harigaya H, Sato T, Inoue K, Okumura M, Ishii J, Anno H, Virmani R, Ozaki Y, Hishida H, Narula J (2007) Multislice computed tomographic characteristics of coronary lesions in acute coronary syndromes. J Am Coll Cardiol 50:319–326

    Article  PubMed  Google Scholar 

  28. Guo W, Morrisett JD, DeBakey ME, Lawrie GM, Hamilton JA (2000) Quantification in situ of crystalline cholesterol and calcium phosphate hydroxyapatite in human atherosclerotic plaques by solid-state magic angle spinning NMR. Arterioscler Thromb Vasc Biol 20:1630–1636

    Article  PubMed  CAS  Google Scholar 

  29. Anderson HC (1983) Calcific diseases. A concept. Arch Pathol Lab Med 107:341–348

    PubMed  CAS  Google Scholar 

  30. Sage AP, Tintut Y, Demer LL (2010) Regulatory mechanisms in vascular calcification. Nat Rev Cardiol 7:528–536

    Article  PubMed  CAS  Google Scholar 

  31. Jehle S, Hulter HN, Krapf R (2013) Effect of potassium citrate on bone density, microarchitecture, and fracture risk in healthy older adults without osteoporosis: a randomized controlled trial. J Clin Endocrinol Metab 98:207–217

    Article  PubMed  CAS  Google Scholar 

  32. Johnsson MSA, Nancollas GH (1992) The role of brushite and octacalcium phosphate in apatite formation. Crit Rev Oral Biol Med 3:61–82

    PubMed  CAS  Google Scholar 

  33. Wang L, MNancollas GH (2009) Calcium orthophosphates: crystallization and dissolution. Chem Rev 108:4628–4669

    Article  Google Scholar 

  34. Rodgers AL, Allie-Hamdulay S, Jackson G, Tiselius HG (2011) Simulating calcium salt precipitation in the nephron using chemical speciation. Urol Res 39:245–251

    Article  PubMed  Google Scholar 

  35. Jiang WG, Chu XB, Wang B, Pan HH, Xu XR, Tang RK (2009) Biomimetically triggered inorganic crystal transformation by biomolecules: a new understanding of biomineralization. J Phys Chem B 113:10838–10844

    Article  PubMed  CAS  Google Scholar 

  36. Morton AR, Iliescu EA, Wilson JW (2002) Nephrology: 1. Investigation and treatment of recurrent kidney stones. Can Med Assoc J 166:213–218

    Google Scholar 

  37. Mandel S, Tas AC (2010) Brushite (CaHPO4·2H2O) to octacalcium phosphate (Ca8(HPO4)2(PO4)4·5H2O) transformation in DMEM solutions at 36.5 °C. Mater Sci Eng C Mater Biol Appl 30:245–254

    Article  CAS  Google Scholar 

  38. Tseng YH, Mou CY, Chan JC (2006) Solid-state NMR study of the transformation of octacalcium phosphate to hydroxyapatite: a mechanistic model for central dark line formation. J Am Chem Soc 128:6909–6918

    Article  PubMed  CAS  Google Scholar 

  39. Evan AP, Lingeman JE, Coe FL, Shao Y, Parks JH, Bledsoe SB, Phillips CL, Bonsib S, Worcester EM, Sommer AJ, Kim SC, Tinmouth WW, Grynpas M (2005) Crystal-associated nephropathy in patients with brushite nephrolithiasis. Kidney Int 67:576–591

    Article  PubMed  CAS  Google Scholar 

  40. Parks JH, Worcester EM, Coe FL, Evan AP, Lingeman JE (2004) Clinical implications of abundant calcium phosphate in routinely analyzed kidney stones. Kidney Int 66:777–785

    Article  PubMed  CAS  Google Scholar 

  41. Pramanik R, Asplin JR, Jackson ME, Williams JC Jr (2008) Protein content of human apatite and brushite kidney stones: significant correlation with morphologic measures. Urol Res 36:251–258

    Article  PubMed  CAS  Google Scholar 

  42. Krambeck AE, Handa SE, Evan AP, Lingeman JE (2010) Brushite stone disease as a consequence of lithotripsy? Urol Res 38:293–299

    Article  PubMed  Google Scholar 

  43. Canales BK, Anderson L, Higgins L, Frethem C, Ressler A, Kim IW, Monga M (2009) Proteomic analysis of a matrix stone: a case report. Urol Res 37:323–329

    Article  PubMed  Google Scholar 

  44. Costa-Bauza A, Barcelo C, Perello J, Grases F (2002) Synergism between the brushite and hydroxyapatite urinary crystallization inhibitors. Int Urol Nephrol 34:447–451

    Article  PubMed  CAS  Google Scholar 

  45. Pak CYC (1981) Potential etiologic role of brushite in the formation of calcium (renal) stones. J Cryst Growth 53:202–208

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The U.K. Biotechnology and Biological Sciences Research Council (BBSRC), the British Heart Foundation (BHF), the South African National Research Foundation (NRF) and Medical Research Council (MRC), and the U.K. Royal Society of Chemistry for a SA/UK Science Networks Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melinda J. Duer.

Additional information

The authors have stated that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 670 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reid, D.G., Duer, M.J., Jackson, G.E. et al. Citrate Occurs Widely in Healthy and Pathological Apatitic Biomineral: Mineralized Articular Cartilage, and Intimal Atherosclerotic Plaque and Apatitic Kidney Stones. Calcif Tissue Int 93, 253–260 (2013). https://doi.org/10.1007/s00223-013-9751-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-013-9751-5

Keywords

Navigation