Skip to main content

Advertisement

Log in

Ubiquitin-Like Domain of IKKβ Regulates Osteoclastogenesis and Osteolysis

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

The transcription factor NF-κB family is central for osteoclastogenesis and inflammatory osteolysis. Activation of NF-κB dimers is regulated by a kinase complex predominantly containing IKKα (IKK1), IKKβ (IKK2), and a regulatory subunit, IKKγ/NEMO. IKKα and IKKβ catalyze the cytoplasmic liberation and nuclear translocation of various NF-κB subunits. The requirement of IKKα and IKKβ for normal bone homeostasis has been established. Congruently, mice devoid of IKKα or IKKβ exhibit in vitro and in vivo defects in osteoclastogenesis, and IKKβ-null mice are refractory to inflammatory arthritis and osteolysis. To better understand the molecular mechanism underlying IKKβ function in bone homeostasis and bone pathologies, we conducted structure–function analysis to determine IKKβ functional domains in osteoclasts. IKKβ encompasses several domains, of which the ubiquitination-like domain (ULD) has been shown essential for IKKβ activation. In this study, we examined the role of ULD in IKKβ-mediated NF-κB activation in osteoclast precursors and its contribution to osteoclastogenesis and osteolysis. We generated and virally introduced IKKβ in which the ULD domain has been deleted (IKKβ∆ULD) into osteoclast progenitors. The results show that deletion of ULD diminishes IKKβ activity and that IKKβ∆ULD strongly inhibits osteoclastogenesis. In addition, unlike wild type (WT)-IKKβ, IKKβ∆ULD fail to restore RANKL-induced osteoclastogenesis by IKKβ-null precursors. Finally, we provide evidence that IKKβ∆ULD blocks inflammatory osteolysis in a model of murine calvarial osteolysis. Thus, we identified the ULD as crucial for IKKβ activity and osteoclastogenesis and found that ULD-deficient IKKβ is a potent inhibitor of osteoclastogenesis and osteolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abu-Amer Y (2005) Advances in osteoclast differentiation and function. Curr Drug Targets Immune Endocr Metabol Disord 5:347–355

    Article  PubMed  CAS  Google Scholar 

  2. Teitelbaum SL (2007) Osteoclasts: what do they do and how do they do it? Am J Pathol 170:427–435

    Article  PubMed  CAS  Google Scholar 

  3. Teitelbaum SL (2006) Osteoclasts; culprits in inflammatory osteolysis. Arthritis Res Ther 8:201

    Article  PubMed  Google Scholar 

  4. Abu-Amer Y (2009) Inflammation, cancer, and bone loss. Curr Opin Pharmacol 9:427–433

    Article  PubMed  CAS  Google Scholar 

  5. Abu-Amer Y, Tondravi MM (1997) NFκB and bone: the breaking point. Nat Med 3:1189–1190

    Article  PubMed  CAS  Google Scholar 

  6. Karin M, Greten FR (2005) NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 5:749–759

    Article  PubMed  CAS  Google Scholar 

  7. Karin M, Yamamoto Y, Wang M (2004) The IKK NF-kB system: a treasure trove for drug development. Nat Rev 3:17–26

    Article  CAS  Google Scholar 

  8. Hèacker H, Karin M (2006) Regulation and function of IKK and IKK-related kinases. Sci STKE. doi:10.1126/stke.3572006re13

    Google Scholar 

  9. Boyce BF, Yao Z, Xing L (2010) Functions of nuclear factor kappaB in bone. Ann N Y Acad Sci 1192:367–375

    Article  PubMed  CAS  Google Scholar 

  10. Boyce B, Xing L, Fransozo G, Siebenlist U (1999) Required and nonessential functions of nuclear factor-kB in bone cells. Bone 25:137–139

    Article  PubMed  CAS  Google Scholar 

  11. Abu-Amer Y, Darwech I, Otero J (2008) Role of the NF-kappaB axis in immune modulation of osteoclasts and bone loss. Autoimmunity 41:204–211

    Article  PubMed  CAS  Google Scholar 

  12. Clohisy JC, Yamanaka Y, Faccio R, Abu-Amer Y (2006) Inhibition of IKK activation, through sequestering NEMO, blocks PMMA-induced osteoclastogenesis and calvarial inflammatory osteolysis. J Orthopaed Res 24:1358–1365

    Article  CAS  Google Scholar 

  13. Dai S, Hirayama T, Abbas S, Abu-Amer Y (2004) The IkappaB kinase (IKK) inhibitor, NEMO-binding domain peptide, blocks osteoclastogenesis and bone erosion in inflammatory arthritis. J Biol Chem 279:37219–37222

    Article  PubMed  CAS  Google Scholar 

  14. Rehman KK, Bertera S, Bottino R, Balamurugan AN, Mai JC, Mi Z, Trucco M, Robbins PD (2003) Protection of islets by in situ peptide-mediated transduction of the Ikappa B kinase inhibitor Nemo-binding domain peptide. J Biol Chem 278:9862–9868

    Article  PubMed  CAS  Google Scholar 

  15. Soysa NS, Alles N, Shimokawa H, Jimi E, Aoki K, Ohya K (2009) Inhibition of the classical NF-kappa B pathway prevents osteoclast bone-resorbing activity. J Bone Miner Metab 27:131–139

    Article  PubMed  CAS  Google Scholar 

  16. Darwech I, Otero J, Alhawagri M, Dai S, Abu-Amer Y (2009) Impediment of NEMO oligomerization inhibits osteoclastogenesis and osteolysis. J Cell Biochem 108:1337–1345

    Article  PubMed  CAS  Google Scholar 

  17. Otero JE, Chen T, Zhang K, Abu-Amer Y (2012) Constitutively active canonical +NF-kappaB pathway induces severe bone loss in mice. PLoS One 7:e38694

    Article  PubMed  CAS  Google Scholar 

  18. Otero JE, Dai S, Alhawagri MA, Darwech I, Abu-Amer Y (2010) IKKbeta activation is sufficient for RANK-independent osteoclast differentiation and osteolysis. J Bone Miner Res 25:1282–1294

    Article  PubMed  CAS  Google Scholar 

  19. Darwech I, Otero JE, Alhawagri MA, Abu-Amer Y (2010) Tyrosine phosphorylation is required for IkappaB kinase-beta (IKKbeta) activation and function in osteoclastogenesis. J Biol Chem 285:25522–25530

    Article  PubMed  CAS  Google Scholar 

  20. Otero JE, Dai S, Foglia D, Alhawagri M, Vacher J, Pasparakis M, Abu-Amer Y (2008) Defective osteoclastogenesis by IKKbeta-null precursors is a result of receptor activator of NF-kappaB ligand (RANKL)-induced JNK-dependent apoptosis and impaired differentiation. J Biol Chem 283:24546–24553

    Article  PubMed  CAS  Google Scholar 

  21. Morita S, Kojima T, Kitamura T (2000) Plat-E: an efficient and stable system for transient packaging of retroviruses. Gene Ther 7:1063–1066

    Article  PubMed  CAS  Google Scholar 

  22. Anderson RD, Haskell RE, Xia H, Roessler BJ, Davidson BL (2000) A simple method for the rapid generation of recombinant adenovirus vectors. Gene Ther 7:1034–1038

    Article  PubMed  CAS  Google Scholar 

  23. Drouet C, Shakhov AN, Jongeneel CV (1991) Enhancers and transcription factors controlling the inducibility of the tumor necrosis factor-alpha promoter in primary macrophages. J Immunol 147:1694–1700

    PubMed  CAS  Google Scholar 

  24. May MJ, Larsen SE, Shim JH, Madge LA, Ghosh S (2004) A novel ubiquitin-like domain in Ikappa B-kinase beta is required for functional activity of the kinase. J Biol Chem 279:45528–45539

    Article  PubMed  CAS  Google Scholar 

  25. May MJ, Marienfeld RB, Ghosh S (2002) Characterization of the Ikappa B-kinase NEMO binding domain. J Biol Chem 277:45992–46000

    Article  CAS  Google Scholar 

  26. Ruocco MG, Karin M (2005) IKK{beta} as a target for treatment of inflammation induced bone loss. Ann Rheum Dis 64(Suppl 4):iv81–iv85

    Article  PubMed  CAS  Google Scholar 

  27. Abbas S, Abu-Amer Y (2003) Dominant-negative IkappaB facilitates apoptosis of osteoclasts by tumor necrosis factor-alpha. J Biol Chem 278:20077–20082

    Article  CAS  Google Scholar 

  28. Abu-Amer Y, Dowdy SF, Ross FP, Clohisy JC, Teitelbaum SL (2001) TAT fusion proteins containing tyrosine 42-deleted IkappaBalpha arrest osteoclastogenesis. J Biol Chem 276:30499–30503

    Article  CAS  Google Scholar 

  29. Clohisy J, Hirayama T, Frazier E, Han S, Abu-Amer Y (2004) NF-kB signaing blockade abolishes implant particle-induced osteoclastogenesis. J Orthop Res 22:13–20

    Article  CAS  Google Scholar 

  30. Clohisy JC, Roy BC, Biondo C, Frazier E, Willis D, Teitelbaum SL, Abu-Amer Y (2003) Direct inhibition of NF-kappa B blocks bone erosion associated with inflammatory arthritis. J Immunol 171:5547–5553

    CAS  Google Scholar 

  31. Ruocco MG, Karin M (2007) Control of osteoclast activity and bone loss by IKK subunits: new targets for therapy. Adv Exp Med Biol 602:125–134

    Article  PubMed  Google Scholar 

  32. Baker RG, Hayden MS, Ghosh S (2011) NF-kappaB, inflammation, and metabolic disease. Cell Metab 13:11–22

    Article  PubMed  CAS  Google Scholar 

  33. Jimi E, Ghosh S (2005) Role of nuclear factor-kappaB in the immune system and bone. Immunol Rev 208:80–87

    Article  PubMed  CAS  Google Scholar 

  34. Carter RS, Pennington KN, Arrate P, Oltz EM, Ballard DW (2005) Site-specific Monoubiquitination of I{kappa}B kinase IKKbeta regulates its phosphorylation and persistent activation. J Biol Chem 280:43272–43279

    Article  PubMed  CAS  Google Scholar 

  35. Carter RS, Pennington KN, Ungurait BJ, Arrate P, Ballard DW (2003) Signal-induced ubiquitination of I{kappa}B kinase-{beta}. J Biol Chem 278:48903–48906

    Article  PubMed  CAS  Google Scholar 

  36. Alhawagri M, Yamanaka Y, Ballard D, Oltz E, Abu-Amer Y (2012) Lysine392, a K63-linked ubiquitination site in NEMO, mediates inflammatory osteoclastogenesis and osteolysis. J Orthop Res 30:554–560

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study is supported by National Institutes of Health Grants AR049192 and AR054326; and by Grant 85600 from the Shriners Hospital for Children (to Y. A.-A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yousef Abu-Amer.

Additional information

The authors report that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Otero, J.E. & Abu-Amer, Y. Ubiquitin-Like Domain of IKKβ Regulates Osteoclastogenesis and Osteolysis. Calcif Tissue Int 93, 78–85 (2013). https://doi.org/10.1007/s00223-013-9735-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-013-9735-5

Keywords

Navigation