Skip to main content
Log in

Calcified Cartilage Islands in Rat Cortical Bone

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Rats display little to no haversian remodeling of cortical bone. This fact, combined with the endochondral formation of cortical bone, means that rat femoral cortical bone contains highly mineralized cartilage islands in a central band of mid-femoral cross sections. We demonstrate that these islands have a significantly higher degree of mineralization than the surrounding bone, using quantitative backscattered electron imaging. The cartilaginous nature of the islands was verified by immunostaining for collagen type II. Toluidine blue staining of longitudinal sections and three-dimensional synchrotron radiation X-ray tomographic microscopy confirmed that the islands are elongated along the femoral long axis. Nanoindentation revealed significantly higher values of both reduced modulus and hardness in the islands compared to the surrounding bone, reflecting a higher degree of mineralization. The calcified cartilage islands were distributed in a central zone of the bone, from the growth plates through the mid-femoral bone. The presence of these cartilage islands and their possible effect on mechanical properties could be an additional reason why haversian remodeling is observed in higher-order species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wronski TJ, Dann LM, Scott KS, Cintrón M (1989) Long-term effects of ovariectomy and aging on the rat skeleton. Calcif Tissue Int 45:360–366

    Article  PubMed  CAS  Google Scholar 

  2. Berg BN, Harmison CR (1957) Growth, disease, and aging in the rat. J Gerontol 12:370–377

    Article  PubMed  CAS  Google Scholar 

  3. Dawson AB (1934) Additional evidence of the failure of epiphyseal union in the skeleton of the rat. Studies of wild and captive gray Norway rats. Anat Rec 60:501–511

    Article  Google Scholar 

  4. Dawson AB (1934) Further studies on epiphyseal union in the skeleton of the rat. Anat Rec 60:83–86

    Article  Google Scholar 

  5. Sontag W (1992) Age-dependent morphometric alterations in the distal femora of male and female rats. Bone 13:297–310

    Article  PubMed  CAS  Google Scholar 

  6. Ijiri K, Ma YF, Jee WSS, Akamine T, Liang X (1995) Adaptation of non-growing former epiphysis and metaphyseal trabecular bones to aging and immobilization in rats. Bone 17:207S–212S

    PubMed  CAS  Google Scholar 

  7. Currey JD (2002) Bone: structure and mechanics. Princeton University Press, Princeton

    Google Scholar 

  8. Bentolila V, Boyce TM, Fyhrie DP, Drumb R, Skerry TM, Schaffler MB (1998) Intracortical remodeling in adult rat long bones after fatigue loading. Bone 23:275–281

    Article  PubMed  CAS  Google Scholar 

  9. Wang Q, Wang X-F, Iuliano-Burns S, Ghasem-Zadeh A, Zebaze R, Seeman E (2010) Rapid growth produces transient cortical weakness: a risk factor for metaphyseal fractures during puberty. J Bone Miner Res 25:1521–1526

    Article  PubMed  Google Scholar 

  10. Cadet ER, Gafni RI, McCarthy EF, McCray DR, Bacher JD, Barnes KM, Baron J (2003) Mechanisms responsible for longitudinal growth of the cortex: coalescence of trabecular bone into cortical bone. J Bone Joint Surg Am 85:1737–1748

    Google Scholar 

  11. Danielsen CC, Mosekilde L, Svenstrup B (1993) Cortical bone mass, composition, and mechanical properties in female rats in relation to age, long-term ovariectomy, and estrogen substitution. Calcif Tissue Int 52:26–33

    Article  PubMed  CAS  Google Scholar 

  12. Sontag W (1986) Quantitative measurements of periosteal and cortical-endosteal bone formation and resorption in the midshaft of female rat femur. Bone 7:55–62

    Article  PubMed  CAS  Google Scholar 

  13. Reid SA, Boyde A (1987) Changes in the mineral density distribution in human bone with age: image analysis using backscattered electrons in the SEM. J Bone Miner Res 2:13–22

    Article  PubMed  CAS  Google Scholar 

  14. Thomsen JS, Christensen LL, Vegger JB, Nyengaard JR, Brüel A (2012) Loss of bone strength is dependent on skeletal site in disuse osteoporosis in rats. Calcif Tissue Int 90:294–306

    Article  PubMed  CAS  Google Scholar 

  15. Rho JY, Pharr GM (1999) Effects of drying on the mechanical properties of bovine femur measured by nanoindentation. J Mater Sci Mater Med 10:485–488

    Article  PubMed  CAS  Google Scholar 

  16. Weaver JK (1966) The microscopic hardness of bone. J Bone Joint Surg Am 48:273–288

    PubMed  CAS  Google Scholar 

  17. Roschger P, Fratzl P, Eschberger J, Klaushofer K (1998) Validation of quantitative backscattered electron imaging for the measurement of mineral density distribution in human bone biopsies. Bone 23:319–326

    Article  PubMed  CAS  Google Scholar 

  18. Brüel A, Olsen J, Birkedal H, Risager M, Andreassen TT, Raffalt AC, Andersen JET, Thomsen JS (2011) Strontium ranelate is incorporated into the fracture callus, but does not influence the mechanical strength of healing rat fractures. Calcif Tissue Int 88:142–152

    Article  PubMed  Google Scholar 

  19. Gupta HS, Stachewicz U, Wagermaier W, Roschger P, Wagner HD, Fratzl P (2006) Mechanical modulation at the lamellar level in osteonal bone. J Mater Res 21:1913–1921

    Article  CAS  Google Scholar 

  20. Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7:1564–1583

    Article  CAS  Google Scholar 

  21. Stamponi M, Groso A, Isenegger A, Mikuljan G, Chen Q, Bertrand A, Henein S, Betemps R, Frommherz U, Böhler P, Meister D, Lange M, Abela R (2006) Trends in synchrotron-based tomographic imaging: the SLS experience. In: Bonse U (ed) Developments in X-ray tomography. Proceedings of SPIE, vol. 6318. SPIE, Bellingham, p 63180 M

  22. Marone F, Münch B, Stampanoni M (2010) Fast reconstrution algorithm dealing with tomography artifacts. Proc SPIE 7804:780410

    Article  Google Scholar 

  23. Schreiweis MA, Butler JP, Kulkarni NH, Knierman MD, Higgs RE, Halladay DL, Onyia JE, Hale JE (2007) A proteomic analysis of adult rat bone reveals the presence of cartilage/chondrocyte markers. J Cell Biochem 101:466–476

    Article  PubMed  CAS  Google Scholar 

  24. Teti A, Zallone A (2009) Do osteocytes contribute to bone mineral homeostasis? Osteocytic osteolysis revisited. Bone 44:11–16

    Article  PubMed  CAS  Google Scholar 

  25. Qing H, Ardeshirpour L, Pajevic PD, Dusevich V, Jähn K, Kato S, Wysolmerski J, Bonewald LF (2012) Demonstration of osteocytic perilacunar/canalicular remodeling in mice during lactation. J Bone Miner Res 27:1018–1029

    Article  PubMed  CAS  Google Scholar 

  26. Gupta HS, Schratter S, Tesch W, Roschger P, Berzlanovich A, Schoeberl T, Klaushofer K, Fratzl P (2005) Two different correlations between nanoindentation modulus and mineral content in the bone–cartilage interface. J Struct Biol 149:138–148

    Article  PubMed  CAS  Google Scholar 

  27. Skedros JG, Holmes JL, Vajda EG, Bloebaum RD (2005) Cement lines of secondary osteons in human bone are not mineral-deficient: new data in a historical perspective. Anat Rec A Discov Mol Cell Evol Biol 286:781–803

    PubMed  Google Scholar 

  28. Ferguson VL, Bushby AJ, Boyde A (2003) Nanomechanical properties and mineral concentration in articular calcified cartilage and subchondral bone. J Anat 203:191–202

    Article  PubMed  Google Scholar 

  29. Launey ME, Buehler MJ, Ritchie RO (2010) On the mechanistic origins of toughness in bone. Annu Rev Mater Res 40:25–53

    Article  CAS  Google Scholar 

  30. Koester KJ, Ager JW III, Ritchie RO (2008) The true toughness of human cortical bone measured with realistically short cracks. Nat Mater 7:672–677

    Article  PubMed  CAS  Google Scholar 

  31. Zimmermann EA, Launey ME, Barth HB, Ritchie RO (2009) Mixed-mode fracture of human cortical bone. Biomaterials 30:5877–5884

    Article  PubMed  CAS  Google Scholar 

  32. Schaffler MB, Choi K, Milgrom C (1995) Aging and matrix microdamage accumulation in human compact bone. Bone 6:521–525

    Article  Google Scholar 

  33. Schaffler MB, Jepsen KJ (2000) Fatigue and repair in bone. Int J Fatigue 22:839–846

    Article  Google Scholar 

  34. Ebacher V, Wang R (2009) A unique microcracking process associated with the inelastic deformation of haversian bone. Adv Funct Mater 19:57–66

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Danish Council for Independent Research–Natural Science and the Aarhus University Research Foundation for funding. We thank Jytte Utoft and Jacques Chevallier for excellent technical assistance, Jakob Olsen for helpful discussion, and Hanna Leemreize for assistance with the SRXTM measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrik Birkedal.

Additional information

The authors have stated that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bach-Gansmo, F.L., Irvine, S.C., Brüel, A. et al. Calcified Cartilage Islands in Rat Cortical Bone. Calcif Tissue Int 92, 330–338 (2013). https://doi.org/10.1007/s00223-012-9682-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-012-9682-6

Keywords

Navigation