Calcified Tissue International

, Volume 92, Issue 2, pp 207–215 | Cite as

Prevention and Treatment of Vitamin D Deficiency

  • Akash Sinha
  • Tim D. Cheetham
  • Simon H. S. Pearce
Original Research


Vitamin D insufficiency and deficiency are widespread in many countries. We review the evidence pertaining to its prevention and treatment. Deficiency may be adequately treated with many different therapeutic regimens of either cholecalciferol or ergocalciferol, owing to the high therapeutic index of both compounds. Nevertheless, the current evidence suggests that regular dosing with oral cholecalciferol (e.g., 60,000 IU weekly) may have slight advantages over other regimens when replenishing vitamin D stores following deficiency. For long-term supplementation, smaller regular doses, such as cholecalciferol 1,000 IU daily, or 10,000 IU weekly, are suitable. Giving reliable and specific advice about appropriate sunlight exposure remains difficult because of differing interindividual skin pigmentation and variable sunlight UVB content at different latitudes, at different times of year, and in different terrestrial environments.


Vitamin D Rickets Osteomalacia 


  1. 1.
    Bischoff-Ferrari HA et al (2010) Benefit–risk assessment of vitamin D supplementation. Osteoporos Int 21(7):1121–1132PubMedCrossRefGoogle Scholar
  2. 2.
    DeLuca HF (2004) Overview of general physiologic features and functions of vitamin D. Am J Clin Nutr 80(Suppl 6):1689S–1696SPubMedGoogle Scholar
  3. 3.
    Greene-Finestone LS et al (2011) 25-Hydroxyvitamin D in Canadian adults: biological, environmental, and behavioral correlates. Osteoporos Int 22(5):1389–1399PubMedCrossRefGoogle Scholar
  4. 4.
    Holick MF (2007) Vitamin D deficiency. N Engl J Med 357(3):266–281PubMedCrossRefGoogle Scholar
  5. 5.
    Holick MF (2009) Vitamin D status: measurement, interpretation, and clinical application. Ann Epidemiol 19(2):73–78PubMedCrossRefGoogle Scholar
  6. 6.
    Holick MF et al (2011) Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 96(7):1911–1930PubMedCrossRefGoogle Scholar
  7. 7.
    Vieth R et al (2007) The urgent need to recommend an intake of vitamin D that is effective. Am J Clin Nutr 85(3):649–650PubMedGoogle Scholar
  8. 8.
    Heaney RP et al (2003) Calcium absorption varies within the reference range for serum 25-hydroxyvitamin D. J Am Coll Nutr 22(2):142–146PubMedGoogle Scholar
  9. 9.
    Priemel M et al (2010) Bone mineralization defects and vitamin D deficiency: histomorphometric analysis of iliac crest bone biopsies and circulating 25-hydroxyvitamin D in 675 patients. J Bone Miner Res 25(2):305–312PubMedCrossRefGoogle Scholar
  10. 10.
    Dawson-Hughes B et al (2005) Estimates of optimal vitamin D status. Osteoporos Int 16(7):713–716PubMedCrossRefGoogle Scholar
  11. 11.
    Sahota O et al (2004) The relationship between vitamin D and parathyroid hormone: calcium homeostasis, bone turnover, and bone mineral density in postmenopausal women with established osteoporosis. Bone 35(1):312–319PubMedCrossRefGoogle Scholar
  12. 12.
    Aloia JF (2011) The 2011 report on dietary reference intake for vitamin D: where do we go from here? J Clin Endocrinol Metab 96(10):2987–2996PubMedCrossRefGoogle Scholar
  13. 13.
    Institute of Medicine (2011) Dietary reference intakes for calcium and vitamin D. Institute of Medicine, Washington DCGoogle Scholar
  14. 14.
    Ross AC et al (2011) The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: what clinicians need to know. J Clin Endocrinol Metab 96(1):53–58PubMedCrossRefGoogle Scholar
  15. 15.
    Mithal A et al (2009) Global vitamin D status and determinants of hypovitaminosis D. Osteoporos Int 20(11):1807–1820PubMedCrossRefGoogle Scholar
  16. 16.
    Carter GD et al (2004) Measurement of Vitamin D metabolites: an international perspective on methodology and clinical interpretation. J Steroid Biochem Mol Biol 89–90(1–5):467–471PubMedCrossRefGoogle Scholar
  17. 17.
    Carter GD et al (2004) How accurate are assays for 25-hydroxyvitamin D? Data from the international vitamin D external quality assessment scheme. Clin Chem 50(11):2195–2197PubMedCrossRefGoogle Scholar
  18. 18.
    Phinney KW (2008) Development of a standard reference material for vitamin D in serum. Am J Clin Nutr 88(2):511S–512SPubMedGoogle Scholar
  19. 19.
    Phinney KW et al (2012) Development and certification of a standard reference material for vitamin D metabolites in human serum. Anal Chem 84(2):956–962PubMedCrossRefGoogle Scholar
  20. 20.
    Diamond J (2005) Evolutionary biology: geography and skin colour. Nature 435(7040):283–284PubMedCrossRefGoogle Scholar
  21. 21.
    Lips P (2010) Worldwide status of vitamin D nutrition. J Steroid Biochem Mol Biol 121(1–2):297–300PubMedCrossRefGoogle Scholar
  22. 22.
    Webb AR et al (2010) The role of sunlight exposure in determining the vitamin D status of the U.K. white adult population. Br J Dermatol 163(5):1050–1055PubMedCrossRefGoogle Scholar
  23. 23.
    Farrar MD et al (2011) Recommended summer sunlight exposure amounts fail to produce sufficient vitamin D status in UK adults of south Asian origin. Am J Clin Nutr 94(5):1219–1224PubMedCrossRefGoogle Scholar
  24. 24.
    Shah M et al (2000) Nutritional rickets still afflict children in north Texas. Tex Med 96(6):64–68PubMedGoogle Scholar
  25. 25.
    Clipp SL et al (2011) Sun-seeking behavior to increase cutaneous vitamin D synthesis: when prevention messages conflict. Public Health Rep 126(4):533–539PubMedGoogle Scholar
  26. 26.
    Cancer Research UK (2010) Sunsmart: position statement on vitamin D. Accessed 26 Feb 2012
  27. 27.
    Diffey B (2008) A behavioral model for estimating population exposure to solar ultraviolet radiation. Photochem Photobiol 84(2):371–375PubMedCrossRefGoogle Scholar
  28. 28.
    Chen TC et al (2007) Factors that influence the cutaneous synthesis and dietary sources of vitamin D. Arch Biochem Biophys 460(2):213–217PubMedCrossRefGoogle Scholar
  29. 29.
    Scientific Advisory Committee on Nutrition (SACN) (2007) Accessed 26 Feb 2012
  30. 30.
    National Diet and Nutrition Survey (2003) The National Diet and Nutrition Survey: adults aged 19 to 64 years. Vitamin and mineral intake and urinary analytes. 2003 Accessed 26 Feb 2012
  31. 31.
    Hypponen E, Power C (2007) Hypovitaminosis D in British adults at age 45 y: nationwide cohort study of dietary and lifestyle predictors. Am J Clin Nutr 85(3):860–868PubMedGoogle Scholar
  32. 32.
    Robinson PD et al (2006) The re-emerging burden of rickets: a decade of experience from Sydney. Arch Dis Child 91(7):564–568PubMedCrossRefGoogle Scholar
  33. 33.
    Sedrani SH, Elidrissy AW, El Arabi KM (1983) Sunlight and vitamin D status in normal Saudi subjects. Am J Clin Nutr 38(1):129–132PubMedGoogle Scholar
  34. 34.
    Sachan A et al (2005) High prevalence of vitamin D deficiency among pregnant women and their newborns in northern India. Am J Clin Nutr 81(5):1060–1064PubMedGoogle Scholar
  35. 35.
    Drincic AT et al (2012) Volumetric dilution, rather than sequestration best explains the low vitamin D status of obesity. Obesity (Silver Spring) 20(7):1444–1448CrossRefGoogle Scholar
  36. 36.
    Dawodu A, Wagner CL (2007) Mother-child vitamin D deficiency: an international perspective. Arch Dis Child 92(9):737–740PubMedCrossRefGoogle Scholar
  37. 37.
    Misra M et al (2008) Vitamin D deficiency in children and its management: review of current knowledge and recommendations. Pediatrics 122(2):398–417PubMedCrossRefGoogle Scholar
  38. 38.
    Horst RL, Napoli JL, Littledike ET (1982) Discrimination in the metabolism of orally dosed ergocalciferol and cholecalciferol by the pig, rat and chick. Biochem J 204(1):185–189PubMedGoogle Scholar
  39. 39.
    Trang HM et al (1998) Evidence that vitamin D3 increases serum 25-hydroxyvitamin D more efficiently than does vitamin D2. Am J Clin Nutr 68(4):854–858PubMedGoogle Scholar
  40. 40.
    Binkley N et al (2011) Evaluation of ergocalciferol or cholecalciferol dosing, 1, 600 IU daily or 50, 000 IU monthly in older adults. J Clin Endocrinol Metab 96(4):981–988PubMedCrossRefGoogle Scholar
  41. 41.
    Heaney RP et al (2011) Vitamin D3 is more potent than vitamin D2 in humans. J Clin Endocrinol Metab 96(3):E447–E452PubMedCrossRefGoogle Scholar
  42. 42.
    Romagnoli E et al (2008) Short and long-term variations in serum calciotropic hormones after a single very large dose of ergocalciferol (vitamin D2) or cholecalciferol (vitamin D3) in the elderly. J Clin Endocrinol Metab 93(8):3015–3020PubMedCrossRefGoogle Scholar
  43. 43.
    Armas LA, Hollis BW, Heaney RP (2004) Vitamin D2 is much less effective than vitamin D3 in humans. J Clin Endocrinol Metab 89(11):5387–5391PubMedCrossRefGoogle Scholar
  44. 44.
    Holick MF et al (2008) Vitamin D2 is as effective as vitamin D3 in maintaining circulating concentrations of 25-hydroxyvitamin D. J Clin Endocrinol Metab 93(3):677–681PubMedCrossRefGoogle Scholar
  45. 45.
    Thacher TD et al (2009) The effect of vitamin D2 and vitamin D3 on intestinal calcium absorption in Nigerian children with rickets. J Clin Endocrinol Metab 94(9):3314–3321PubMedCrossRefGoogle Scholar
  46. 46.
    Rapuri PB, Gallagher JC, Haynatzki G (2004) Effect of vitamins D2 and D3 supplement use on serum 25(OH)D concentration in elderly women in summer and winter. Calcif Tissue Int 74(2):150–156PubMedCrossRefGoogle Scholar
  47. 47.
    Markestad T et al (1984) 25-Hydroxyvitamin D and 1, 25-dihydroxyvitamin D of D2 and D3 origin in maternal and umbilical cord serum after vitamin D2 supplementation in human pregnancy. Am J Clin Nutr 40(5):1057–1063PubMedGoogle Scholar
  48. 48.
    Tjellesen L et al (1986) Serum concentration of vitamin D metabolites during treatment with vitamin D2 and D3 in normal premenopausal women. Bone Miner 1(5):407–413PubMedGoogle Scholar
  49. 49.
    Tripkovic L et al (2012) Comparison of vitamin D2 and vitamin D3 supplementation in raising serum 25-hydroxyvitamin D status: a systematic review and meta-analysis. Am J Clin Nutr 95(6):1357–1364PubMedCrossRefGoogle Scholar
  50. 50.
    Hackman KL et al (2010) Efficacy and safety of oral continuous low-dose versus short-term high-dose vitamin D: a prospective randomised trial conducted in a clinical setting. Med J Aust 192(12):686–689PubMedGoogle Scholar
  51. 51.
    Shakiba M et al (2010) Combination of bolus dose vitamin D with routine vaccination in infants: a randomised trial. Singapore Med J 51(5):440–445PubMedGoogle Scholar
  52. 52.
    Pekkarinen T et al (2010) The same annual dose of 292000 IU of vitamin D (cholecalciferol) on either daily or four monthly basis for elderly women: 1-year comparative study of the effects on serum 25(OH)D concentrations and renal function. Clin Endocrinol (Oxf) 72(4):455–461CrossRefGoogle Scholar
  53. 53.
    Ilahi M, Armas LA, Heaney RP (2008) Pharmacokinetics of a single, large dose of cholecalciferol. Am J Clin Nutr 87(3):688–691PubMedGoogle Scholar
  54. 54.
    Bischoff-Ferrari HA et al (2012) A pooled analysis of vitamin D dose requirements for fracture prevention. N Engl J Med 367(1):40–49PubMedCrossRefGoogle Scholar
  55. 55.
    Sanders KM et al (2010) Annual high-dose oral vitamin D and falls and fractures in older women: a randomized controlled trial. JAMA 303(18):1815–1822PubMedCrossRefGoogle Scholar
  56. 56.
    Smith H et al (2007) Effect of annual intramuscular vitamin D on fracture risk in elderly men and women–a population-based, randomized, double-blind, placebo-controlled trial. Rheumatology (Oxford) 46(12):1852–1857CrossRefGoogle Scholar
  57. 57.
    Diamond TH et al (2005) Annual intramuscular injection of a megadose of cholecalciferol for treatment of vitamin D deficiency: efficacy and safety data. Med J Aust 183(1):10–12PubMedGoogle Scholar
  58. 58.
    Department of Health (2011) CMO vitamin D advice. Accessed 26 Feb 2012
  59. 59.
    Cipriani C et al (2010) Effect of a single oral dose of 600, 000 IU of cholecalciferol on serum calciotropic hormones in young subjects with vitamin D deficiency: a prospective intervention study. J Clin Endocrinol Metab 95(10):4771–4777PubMedCrossRefGoogle Scholar
  60. 60.
    Burton JM et al (2010) A phase I/II dose-escalation trial of vitamin D3 and calcium in multiple sclerosis. Neurology 74(23):1852–1859PubMedCrossRefGoogle Scholar
  61. 61.
    Siafarikas A, Piazena H, Feister U, Bulsara MK, Meffert H, Hesse V (2011) Randomised controlled trial analysing supplementation with 250 versus 500 units of vitamin D3, sun exposure and surrounding factors in breastfed infants. Arch Dis Child 96:91–95PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Akash Sinha
    • 1
    • 2
  • Tim D. Cheetham
    • 1
    • 2
  • Simon H. S. Pearce
    • 1
    • 3
  1. 1.Institute of Genetic MedicineNewcastle University, International Centre for LifeNewcastle upon TyneUK
  2. 2.Paediatric EndocrinologyRoyal Victoria InfirmaryNewcastle upon TyneUK
  3. 3.EndocrinologyRoyal Victoria InfirmaryNewcastle upon TyneUK

Personalised recommendations