Skip to main content

Advertisement

Log in

Effects of Strontium Ranelate Administration on Calcium Metabolism in Female Patients with Postmenopausal Osteoporosis and Primary Hyperparathyroidism

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

We investigated possible changes of parameters of calcium metabolism induced by strontium ranelate (SR). Twenty-three patients with postmenopausal osteoporosis (PO) and 14 with primary hyperparathyroidism (PHPT) were studied while taking 2 g/day of SR. Women with PO and 10 healthy age-matched control women were also daily supplemented with 1,000 mg calcium and 800 IU vitamin D. All subjects were studied at baseline and after 7 and 30 days; PO women and controls were also investigated at 180 and 360 days of treatment. Serum ionized calcium (iCa), phosphate (sP), magnesium, creatinine, 25-hydroxycholecalciferol (25[OH]D), 1,25-dihydroxycholecalciferol (1,25[OH]2D), serum parathyroid hormone (PTH) were measured. In spot urine, we assessed calcium and phosphate over creatinine ratios (uCa/Cr, uP/Cr), calcium excretion (Ca ex) and renal phosphate threshold (TmP/GFR); in 24-h urine, calcium and magnesium over creatinine clearance ratios (CaCl/CrCl and MgCl/CrCl). In PO, SR administration was associated with a significant decrease of PTH and 1,25(OH)2D levels but an increase of sP (p < 0.001). SR also significantly increased Ca/Cr, Ca ex, and TmP/GFR in spot urine and CaCl/CrCl in both spot and 24-h urine (p = 0.004 to <0.001). In PHPT, SR significantly decreased iCa and increased sP, slightly modifying PTH, 25(OH)D, and 1,25(OH)2D values. Also in PHPT, Ca ex and CaCl/CrCl of spot and 24-h urine, as TmP/GFR, significantly increased (all p < 0.02). SR influenced the main parameters of calcium homeostasis, probably through the calcium-sensing receptor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Meunier PJ, Roux C, Seeman E, Ortolani S, Badurski JE, Spector TD, Cannata J, Balogh A, Lemmel EM, Pors-Nielsen S, Rizzoli R, Genant HK (2004) The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis. N Engl J Med 350:459–468

    Article  PubMed  CAS  Google Scholar 

  2. Reginster JY, Seeman E, De Vernejoul MC, Adami S, Compston J, Phenekos C, Devogelaer JP, Curiel MD, Sawicki A, Goemaere S, Sorensen OH, Felsenberg DD, Meunier PJ (2005) Strontium ranelate reduces the risk of nonvertebral fractures in postmenopausal women with osteoporosis: Treatment of Peripheral Osteoporosis (TROPOS) study. J Clin Endocrinol Metab 90:2816–2822

    Article  PubMed  CAS  Google Scholar 

  3. Seeman E, Vellas B, Benharnou C, Aquino JP, Semler J, Kaufman JM, Hoszowski K, Varela AR, Fiore C, Brixen K, Reginster JY, Boonen S (2006) Strontium ranelate reduces the risk of vertebral and nonvertebral fractures in women eighty years of age and older. J Bone Miner Res 21:1113–1120

    Article  PubMed  CAS  Google Scholar 

  4. Meunier PJ, Roux C, Ortolani S, Diaz-Curiel M, Compston J, Marquis P, Cormier C, Isaia G, Badurski J, Waer JD, Collette J, Reginster JY (2009) Effects of long-term strontium ranelate treatment on vertebral fracture risk in postmenopausal women with osteoporosis. Osteoporos Int 20:1663–1673

    Article  PubMed  CAS  Google Scholar 

  5. Roux C (2008) Strontium ranelate: short- and long-term benefits for post-menopausal women with osteoporosis. Rheumatology 47:iv20–iv22

    Article  PubMed  CAS  Google Scholar 

  6. Bonnelye E, Chabadel A, Saltel F, Jurdic P (2008) Dual effect of strontium ranelate: stimulation of osteoblast differentiation and inhibition of osteoclast formation and resorption in vitro. Bone 42:129–138

    Article  PubMed  CAS  Google Scholar 

  7. Marie PJ, Felsenberg D, Brandi ML (2010) How strontium ranelate, via opposite effects on bone resorption and formation, prevents osteoporosis. Osteoporos Int 22:1659–1667

    Article  PubMed  Google Scholar 

  8. Brown EM (2003) Is the calcium receptor a molecular target for the actions of strontium on bone? Osteoporos Int 14(Suppl 3):S25–S34

    PubMed  CAS  Google Scholar 

  9. Caverzasio J (2008) Strontium ranelate promotes osteoblastic cell replication through at least two different mechanisms. Bone 42:1131–1136

    Article  PubMed  CAS  Google Scholar 

  10. Coulombe J, Faure H, Robin B, Ruat M (2004) In vitro effects of strontium ranelate on the extracellular calcium-sensing receptor. Biochem Biophys Res Commun 323:1184–1190

    Article  PubMed  CAS  Google Scholar 

  11. Mentaverri R, Yano S, Chattopadhyay N, Petit L, Kifor O, Kamel S, Terwilliger EF, Brazier M, Brown EM (2006) The calcium sensing receptor is directly involved in both osteoclast differentiation and apoptosis. FASEB J 20:E1945–E1954

    Article  Google Scholar 

  12. Hurtel-Lemaire AS, Mentaverri R, Caudrillier A, Cournarie F, Wattel A, Kamel S, Terwilliger EF, Brown EM, Brazier M (2009) The calcium-sensing receptor is involved in strontium ranelate–induced osteoclast apoptosis. New insights into the associated signalling pathways. J Biol Chem 284:575–584

    Article  PubMed  CAS  Google Scholar 

  13. Caudrillier A, Hurtel-Lemaire AS, Wattel A, Cournarie F, Godin C, Petit L, Petit JP, Terwilliger EF, Kamel S, Brown EM, Mentaverii R, Brazier M (2010) Strontium ranelate decreases receptor activator of nuclear factor-KB ligand-induced osteoclastic differentiation in vitro: involvement of the calcium-sensing receptor. Mol Pharmacol 78:569–576

    Article  PubMed  CAS  Google Scholar 

  14. Brennan TC, Rybchyn MS, Green W, Atwa S, Conigrave AD, Mason RS (2009) Osteoblasts play key roles in the mechanisms of action of strontium ranelate. Br J Pharmacol 157:1291–1300

    Article  PubMed  CAS  Google Scholar 

  15. Takaoka S, Yamaguchi T, Yano S, Yamaguchi M, Sugimoto T (2010) The calcium-sensing receptor (CaR) is involved in strontium ranelate–induced osteoblast differentiation and mineralization. Horm Metab Res 42:627–631

    Article  PubMed  CAS  Google Scholar 

  16. Fromigué O, Hay E, Barbara A, Petrel C, Traiffort E, Ruat M, Marie PJ (2009) Calcium sensing receptor–dependent and receptor independent activation of osteoblast replication and survival by strontium ranelate. J Cell Mol Med 13:2189–2199

    Article  PubMed  Google Scholar 

  17. Fromigué O, Hay E, Barbara A, Marie PJ (2010) Essential role of nuclear factor of activated T cells (NFAT)-mediated Wnt signalling in osteoblast differentiation induced by strontium ranelate. J Biol Chem 285:25251–25258

    Article  PubMed  Google Scholar 

  18. Marie PJ (2010) Strontium ranelate in osteoporosis and beyond: identifying molecular targets in bone cell biology. Mol Interv 10:305–312

    Article  PubMed  CAS  Google Scholar 

  19. Maresova KB, Franek T, Voadracek T, Stepan J (2011) A comparison of the acute effects of calcium and strontium ranelate on the serum marker of bone resorption. Clin Chem Lab Med 50:333–335

    Google Scholar 

  20. Brown EM (2008) Ca2+-sensing receptor. In: American Society for Bone and Mineral Research (ed) Primer on metabolic bone disease, 8th edn. Wiley, New York, pp 134–141

    Chapter  Google Scholar 

  21. Magno AL, Waed BK, Ratajczak T (2011) The calcium-sensing receptor: a molecular perspective. Endocr Rev 32:3–30

    Article  PubMed  CAS  Google Scholar 

  22. Bilezikian JP, Khan AA, Potts JT (2009) Third International Workshop on the Management of Asymptomatic Primary Hyperparathyroidism. Guidelines for the management of asymptomatic primary hyperparathyroidism: summary statement from the third international workshop. J Clin Endocrinol Metab 94:335–339

    Article  PubMed  CAS  Google Scholar 

  23. Cipriani C, Romagnoli E, Scillitani A, Chiodini I, Clerico R, Carnevale V, Mascia ML, Battista C, Viti R, Pileri M, Eller-Vainicher C, Minisola S (2010) Effect of a single oral dose of 600,000 IU of cholecalciferol on serum calciotropic hormones in young subjects with vitamin D deficiency: a prospective intervention study. J Clin Endocrinol Metab 95:4771–4777

    Article  PubMed  CAS  Google Scholar 

  24. Carnevale V, Dionisi S, Nofroni I, Romagnoli E, Paglia F, De Geronimo S, Pepe J, Clemente G, Tonnarini G, Minisola S (2004) Potential clinical utility of a new IRMA for parathyroid hormone in postmenopausal patients with primary hyperparathyroidism. Clin Chem 50:626–631

    Article  PubMed  CAS  Google Scholar 

  25. Walton RJ, Bijvoet OLM (1975) Nomogram for derivation of renal threshold phosphate concentration. Lancet 2:309–310

    Article  PubMed  CAS  Google Scholar 

  26. Diggle PJ, Liang KY, Zeger SL (1994) Analysis of longitudinal data. Oxford University Press, Oxford

    Google Scholar 

  27. Baron RM, Kenny DA (1986) The moderator-mediator variable distinction in social psychological research: conceptual, strategic, and statistical considerations. J Pers Soc Psychol 51:1173–1182

    Article  PubMed  CAS  Google Scholar 

  28. Imai K, Keele L, Tingley D (2010) A general approach to causal mediation analysis. Psychol Methods 15:309–334

    Article  PubMed  Google Scholar 

  29. Efron B, Tibshirani RJ (1993) An introduction to the bootstrap. Monographs on statistics and applied probability, vol 57. Chapman & Hall/CRC, Boca Raton

    Google Scholar 

  30. Riccardi D, Brown EM (2010) Physiology and pathophysiology of the calcium-sensing receptor in the kidney. Am J Physiol Renal Physiol 298:F485–F499

    Article  PubMed  CAS  Google Scholar 

  31. Romagnoli E, Mascia ML, Cipriani C, Fassino V, Mazzei F, D’Erasmo E, Carnevale V, Scillitani A, Minisola S (2008) Short- and long-term variations in serum calciotropic hormones after a single very large dose of ergocalciferol (vitamin D2) or cholecalciferol (vitamin D3) in the elderly. J Clin Endocrinol Metab 93:3015–3020

    Article  PubMed  CAS  Google Scholar 

  32. Carnevale V, Modoni S, Pileri M, Di Giorgio A, Chiodini I, Minisola S, Vieth R, Scillitani A (2001) Longitudinal evaluation of vitamin D status in healthy subjects from southern Italy: seasonal and gender differences. Osteoporos Int 12:1026–1030

    Article  PubMed  CAS  Google Scholar 

  33. Kifor O, Moore FD Jr, Wang P, Goldstein M, Vassilev P, Kifor I, Hebert SC, Brown EM (1996) Reduced immunostaining for the extracellular Ca2+-sensing receptor in primary and uremic secondary hyperparathyroidism. J Clin Endocrinol Metab 81:1598–1606

    Article  PubMed  CAS  Google Scholar 

  34. Farnebo F, Enberg U, Grimelius L, Bäckdahl M, Schalling M, Larsson C, Farnebo LO (1997) Tumor-specific decreased expression of calcium sensing receptor messenger ribonucleic acid in sporadic primary hyperparathyroidism. J Clin Endocrinol Metab 82:3481–3486

    Article  PubMed  CAS  Google Scholar 

  35. Mazzuoli GF, Minisola S, Scarnecchia L, Pacitti MT, Carnevale V, Romagnoli E, Bigi F, Bianchi G (1990) Two-site assay of intact parathyroid hormone in primary hyperparathyroidism: studies in basal conditions, following adenoma removal and during calcium and EDTA infusion. Clin Chim Acta 190:239–248

    Article  PubMed  CAS  Google Scholar 

  36. Canaff L, Hendy GN (2001) Human calcium-sensing receptor gene. Vitamin D response elements in promoters P1 and P2 confers transcriptional responsiveness to 1,25-dihydroxyvitamin D. J Biol Chem 277:30337–30350

    Article  Google Scholar 

  37. Brown EM, El-Haji Fuleihan G, Chen CJ, Kifor O (1990) A comparison of the effects of divalent and trivalent cations on parathyroid hormone release, 3′5′-cyclic-adenosine monophosphate accumulation, and the levels of inositol phosphates in bovine parathyroid cells. Endocrinology 127:1064–1071

    Article  PubMed  CAS  Google Scholar 

  38. European Medicines Agency. Protelos: scientific discussion. http://www.emea.europa.eu/humandocs/PDFs/EPAR/protelos/121604en6.pdf. Accessed 9 Sept 2011

  39. Skoryna SC (1981) Effects of oral supplementation with stable strontium. Can Med Assoc J 125:703–712

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Carnevale.

Additional information

Vincenzo Carnevale and Romano Del Fiacco contributed equally to this study.

The authors have stated that they have no conflict of interest. Dr. Romano Del Fiacco is currently employed in Eli Lilly-Italy, but he participated in the study before his employment with this company.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carnevale, V., Del Fiacco, R., Romagnoli, E. et al. Effects of Strontium Ranelate Administration on Calcium Metabolism in Female Patients with Postmenopausal Osteoporosis and Primary Hyperparathyroidism. Calcif Tissue Int 92, 15–22 (2013). https://doi.org/10.1007/s00223-012-9659-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-012-9659-5

Keywords

Navigation