Skip to main content
Log in

Technetium-99 Conjugated with Methylene Diphosphonate Ameliorates Ovariectomy-Induced Osteoporotic Phenotype without Causing Osteonecrosis in the Jaw

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Technetium-99 conjugated with methylene diphosphonate (99Tc-MDP) is a novel bisphosphonate derivative without radioactivity and has been successfully used to treat arthritis in China for years. Since bisphosphonate therapy has the potential to induce bisphosphonate-related osteonecrosis of the jaw (BRONJ), we examined whether 99Tc-MDP represents a new class of bisphosphonate for antiresorptive therapy to ameliorate estrogen deficiency-induced bone resorption with less risk of causing BRONJ. We showed that 99Tc-MDP-treated, ovariectomized (OVX) mice had significantly improved bone mineral density and trabecular bone volume in comparison to the untreated OVX group by inhibiting osteoclasts and enhancing osteogenic differentiation of bone marrow mesenchymal stem cells. To determine the potential of inducing BRONJ, 99Tc-MDP/dexamethasone (Dex) or zoledronate/Dex was administered into C57BL/6J mice via the tail vein, followed by extraction of maxillary first molars. Interestingly, 99Tc-MDP treatment showed less risk to induce osteonecrosis in the maxillary bones compared to zoledronate treatment group, partially because 99Tc-MDP neither suppressed adaptive regulatory T cells nor activated the inflammatory T-helper-producing interleukin-17 cells. Taken together, our findings demonstrate that 99Tc-MDP therapy may be a promising approach in the treatment of osteoporosis with less risk of causing BRONJ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rachner TD, Khosla S, Hofbauer LC (2011) Osteoporosis: now and the future. Lancet 377:1276–1287

    Article  PubMed  CAS  Google Scholar 

  2. Cenci S, Weitzmann MN, Roggia C, Namba N, Novack D, Woodring J, Pacifici R (2000) Estrogen deficiency induces bone loss by enhancing T-cell production of TNF-alpha. J Clin Invest 106:1229–1237

    Article  PubMed  CAS  Google Scholar 

  3. Schett G, David JP (2010) The multiple faces of autoimmune-mediated bone loss. Nat Rev Endocrinol 6:698–706

    Article  PubMed  CAS  Google Scholar 

  4. Teitelbaum SL (2004) Postmenopausal osteoporosis, T cells, and immune dysfunction. Proc Natl Acad Sci USA 101:16711–16712

    Article  PubMed  CAS  Google Scholar 

  5. Weitzmann MN, Pacifici R (2006) Estrogen deficiency and bone loss: an inflammatory tale. J Clin Invest 116:1186–1194

    Article  PubMed  CAS  Google Scholar 

  6. Kushner GM, Alpert B (2011) Bisphosphonate-related osteonecrosis of the jaws. Curr Opin Otolaryngol Head Neck Surg 19(4):302–306

    Article  PubMed  Google Scholar 

  7. Kikuiri T, Kim I, Yamaza T et al (2010) Cell-based immunotherapy with mesenchymal stem cells cures bisphosphonate-related osteonecrosis of the jaw-like disease in mice. J Bone Miner Res 25:1668–1679

    Article  PubMed  CAS  Google Scholar 

  8. Bagan J, Scully C, Sabater V, Jimenez Y (2009) Osteonecrosis of the jaws in patients treated with intravenous bisphosphonates (BRONJ): a concise update. Oral Oncol 45:551–554

    Article  PubMed  CAS  Google Scholar 

  9. Lai K, Xu L, Jin C, Wu K, Tian Z, Huang C, Zhong X, Ye H (2011) Technetium-99 conjugated with methylene diphosphonate (99Tc-MDP) inhibits experimental choroidal neovascularization in vivo and VEGF-induced cell migration and tube formation in vitro. Invest Ophthalmol Vis Sci 52:5702–5712

    Article  PubMed  CAS  Google Scholar 

  10. Yan SX, Wang Y, Peng GJ, Lu XP, Fu Y (2011) Effects of technetium-99 methylenediphosphonate on cytokine-induced activation of retro-ocular fibroblasts from patients with Graves’ ophthalmopathy. Nucl Med Commun 32:142–146

    Article  PubMed  CAS  Google Scholar 

  11. Kovacic N, Grcevic D, Katavic V, Lukic IK, Grubisic V, Mihovilovic K, Cvija H, Croucher PI, Marusic A (2010) Fas receptor is required for estrogen deficiency–induced bone loss in mice. Lab Invest 90:402–413

    Article  PubMed  CAS  Google Scholar 

  12. Yamaza T, Miura Y, Bi Y et al (2008) Pharmacologic stem cell based intervention as a new approach to osteoporosis treatment in rodents. PLoS ONE 3:2615

    Article  Google Scholar 

  13. Daci E, Verstuyf A, Moermans K, Bouillon R, Carmeliet G (2000) Mice lacking the plasminogen activator inhibitor 1 are protected from trabecular bone loss induced by estrogen deficiency. J Bone Miner Res 15:1510–1516

    Article  PubMed  CAS  Google Scholar 

  14. Okada Y, Morimoto I, Ura K, Nakano Y, Tanaka Y, Nishida S, Nakamura T, Eto S (1998) Short-term treatment of recombinant murine interleukin-4 rapidly inhibits bone formation in normal and ovariectomized mice. Bone 22:361–365

    Article  PubMed  CAS  Google Scholar 

  15. Yamaza T, Ren G, Akiyama K, Chen C, Shi Y, Shi S (2011) Mouse mandible contains distinctive mesenchymal stem cells. J Dent Res 90:317–324

    Article  PubMed  CAS  Google Scholar 

  16. Roggia C, Gao Y, Cenci S, Weitzmann MN, Toraldo G, Isaia G, Pacifici R (2001) Upregulation of TNF-producing T cells in the bone marrow: a key mechanism by which estrogen deficiency induces bone loss in vivo. Proc Natl Acad Sci USA 98:13960–13965

    Article  PubMed  CAS  Google Scholar 

  17. Miura M, Chen XD, Allen MR et al (2004) A crucial role of caspase-3 in osteogenic differentiation of bone marrow stromal stem cells. J Clin Invest 114:1704–1713

    PubMed  CAS  Google Scholar 

  18. Cohen A, Dempster DW, Recker RR et al (2011) Abnormal bone microarchitecture and evidence of osteoblast dysfunction in premenopausal women with idiopathic osteoporosis. J Clin Endocrinol Metab 96(10):3095–3105

    Article  PubMed  CAS  Google Scholar 

  19. Marx RE (2003) Pamidronate (Aredia) and zoledronate (Zometa) induced avascular necrosis of the jaws: a growing epidemic. J Oral Maxillofac Surg 61:1115–1117

    Article  PubMed  Google Scholar 

  20. Marx RE, Sawatari Y, Fortin M, Broumand V (2005) Bisphosphonate-induced exposed bone (osteonecrosis/osteopetrosis) of the jaws: risk factors, recognition, prevention, and treatment. J Oral Maxillofac Surg 63:1567–1575

    Article  PubMed  Google Scholar 

  21. Khosla S, Burr D, Cauley J et al (2007) Bisphosphonate-associated osteonecrosis of the jaw: report of a task force of the American Society for Bone and Mineral Research. J Bone Miner Res 22:1479–1491

    Article  PubMed  Google Scholar 

  22. Wolf AM, Rumpold H, Tilg H, Gastl G, Gunsilius E, Wolf D (2006) The effect of zoledronic acid on the function and differentiation of myeloid cells. Haematologica 91:1165–1171

    PubMed  CAS  Google Scholar 

  23. Fiore F, Castella B, Nuschak B, Bertieri R, Mariani S, Bruno B, Pantaleoni F, Foglietta M, Boccadoro M, Massaia M (2007) Enhanced ability of dendritic cells to stimulate innate and adaptive immunity on short-term incubation with zoledronic acid. Blood 110:921–927

    Article  PubMed  CAS  Google Scholar 

  24. Sonis ST, Watkins BA, Lyng GD, Lerman MA, Anderson KC (2009) Bony changes in the jaws of rats treated with zoledronic acid and dexamethasone before dental extractions mimic bisphosphonate-related osteonecrosis in cancer patients. Oral Oncol 45:164–172

    Article  PubMed  CAS  Google Scholar 

  25. Contie S, Voorzanger-Rousselot N, Litvin J, Bonnet N, Ferrari S, Clezardin P, Garnero P (2010) Development of a new ELISA for serum periostin: evaluation of growth-related changes and bisphosphonate treatment in mice. Calcif Tissue Int 87:341–350

    Article  PubMed  CAS  Google Scholar 

  26. Yamane H, Sakai A, Mori T, Tanaka S, Moridera K, Nakamura T (2009) The anabolic action of intermittent PTH in combination with cathepsin K inhibitor or alendronate differs depending on the remodeling status in bone in ovariectomized mice. Bone 44:1055–1062

    Article  PubMed  CAS  Google Scholar 

  27. Kemp CJ, Leary CN, Drinkwater NR (1989) Promotion of murine hepatocarcinogenesis by testosterone is androgen receptor–dependent but not cell autonomous. Proc Natl Acad Sci USA 86:7505–7509

    Article  PubMed  CAS  Google Scholar 

  28. Chang J, Wang Z, Tang E, Fan Z, McCauley L, Franceschi R, Guan K, Krebsbach PH, Wang CY (2009) Inhibition of osteoblastic bone formation by nuclear factor-kappaB. Nat Med 15:682–689

    Article  PubMed  CAS  Google Scholar 

  29. Ebert R, Zeck S, Krug R, Meissner-Weigl J, Schneider D, Seefried L, Eulert J, Jakob F (2009) Pulse treatment with zoledronic acid causes sustained commitment of bone marrow derived mesenchymal stem cells for osteogenic differentiation. Bone 44:858–864

    Article  PubMed  CAS  Google Scholar 

  30. Duque G, Rivas D (2007) Alendronate has an anabolic effect on bone through the differentiation of mesenchymal stem cells. J Bone Miner Res 22:1603–1611

    Article  PubMed  CAS  Google Scholar 

  31. Li YF, Zhou CC, Li JH, Luo E, Zhu SS, Feng G, Hu J (2012) The effects of combined human parathyroid hormone (1–34) and zoledronic acid treatment on fracture healing in osteoporotic rats. Osteoporos Int 23:1463–1474

    Article  PubMed  CAS  Google Scholar 

  32. Rizzoli R, Akesson K, Bouxsein M, Kanis JA, Napoli N, Papapoulos S, Reginster JY, Cooper C (2011) Subtrochanteric fractures after long-term treatment with bisphosphonates: a European Society on Clinical and Economic Aspects of Osteoporosis and Osteoarthritis, and International Osteoporosis Foundation Working Group Report. Osteoporos Int 22:373–390

    Article  PubMed  CAS  Google Scholar 

  33. Allen MR, Burr DB (2007) Three years of alendronate treatment results in similar levels of vertebral microdamage as after one year of treatment. J Bone Miner Res 22:1759–1765

    Article  PubMed  CAS  Google Scholar 

  34. Sakaguchi S, Yamaguchi T, Nomura T, Ono M (2008) Regulatory T cells and immune tolerance. Cell 133:775–787

    Article  PubMed  CAS  Google Scholar 

  35. Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, Murphy KM, Weaver CT (2005) Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 6:1123–1132

    Article  PubMed  CAS  Google Scholar 

  36. Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, Weiner HL, Kuchroo VK (2006) Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441:235–238

    Article  PubMed  CAS  Google Scholar 

  37. Awasthi A, Murugaiyan G, Kuchroo VK (2008) Interplay between effector Th17 and regulatory T cells. J Clin Immunol 28:660–670

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the U.S. National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services (R01DE017449, R01DE019932, and R01DE019413 to S.S.) and from the National Basic Research Program (973 Program) of China (2011CB964700).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Jin or Songtao Shi.

Additional information

Yinghua Zhao and Lei Wang contributed equally to this study.

The authors have stated that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 1761 kb)

Supplementary material 2 (TIFF 5528 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, Y., Wang, L., Liu, Y. et al. Technetium-99 Conjugated with Methylene Diphosphonate Ameliorates Ovariectomy-Induced Osteoporotic Phenotype without Causing Osteonecrosis in the Jaw. Calcif Tissue Int 91, 400–408 (2012). https://doi.org/10.1007/s00223-012-9649-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-012-9649-7

Keywords

Navigation