Skip to main content

Advertisement

Log in

Local Delivery of Recombinant Osteoprotegerin Enhances Postorthodontic Tooth Stability

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Relapse after orthodontic tooth movement is a significant problem in orthodontics. The purpose of this study was to examine the efficacy of the osteoclast inhibitor osteoprotegerin-Fc (OPG-Fc) for inhibiting postorthodontic relapse. Rat maxillary molars were moved mesially and allowed to relapse for 24 days. Low-dose (1 mg/kg) or high-dose (5 mg/kg) OPG-Fc or saline was injected adjacent to the molars during relapse. Tooth movement, micro-CT, histologic bone quality, and serum OPG and TRAP-5b were measured. OPG-Fc injections significantly diminished postorthodontic relapse from 63% (0.78/1.20 mm) of total movement in vehicle control rats to 31% (0.31/1.00 mm) in low-dose and 24% (0.28/1.16 mm) in high-dose OPG-Fc groups 24 days after appliance removal. Normalization of bone and periodontal tissues occurred as early as 8 and 16 days in the high- and low-dose OPG-Fc-treated groups, respectively, while the vehicle-treated group showed only partial tissue recovery 24 days following tooth movement. After 24 days of relapse, there was complete recovery to pre-tooth-movement values for bone volume fraction (BVF) and tissue mineral density (TMD) in both the low- and high-dose OPG-Fc groups, while BVF recovered only partially and TMD did not recover in the vehicle control group. Greatly elevated serum OPG levels and reduced serum TRAP-5b levels in OPG-Fc-treated animals indicated systemic exposure to locally injected drug. The profound decrease in postorthodontic relapse by local OPG-Fc administration indicates that osteoclasts are critical to bone maturation following tooth movement and points to the potential pharmacologic use of OPG-Fc or other RANKL inhibitors for orthodontic retention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Brodie AG (1952) Consideration of musculature in diagnosis, treatment, and retention. Am J Orthod 38:823–835

    Article  Google Scholar 

  2. Proffit WR (1978) Equilibrium theory revisited: factors influencing position of the teeth. Angle Orthod 48:175–186

    PubMed  CAS  Google Scholar 

  3. Bergstrom K, Jensen R, Martensson B (1973) The effect of superior labial frenectomy in cases with midline diastema. Am J Orthod 63:633–638

    Article  PubMed  CAS  Google Scholar 

  4. Reitan K (1951) The initial tissue reaction incident to orthodontic tooth movement as related to the influence of function: an experimental histologic study on animal and human material. Acta Odontol Scand Suppl 6:1–240

    PubMed  CAS  Google Scholar 

  5. Reitan K (1959) Tissue rearrangement during retention of orthodontically rotated teeth. Angle Orthod 29:105–113

    Google Scholar 

  6. Reitan K (1969) Principles of retention and avoidance of posttreatment relapse. Am J Orthod 55:776–790

    Article  PubMed  CAS  Google Scholar 

  7. Grieve GW (1944) The stability of the treated denture. Am J Orthod Oral Surg 30:171–195

    Article  Google Scholar 

  8. Tweed CH (1944) Indications for the extraction of teeth in orthodontic procedure. Am J Orthod 30:405–428

    Google Scholar 

  9. Strang RHW (1949) The fallacy of denture expansion as a treatment procedure. Angle Orthod 19:12–22

    Google Scholar 

  10. Driscoll-Gilliland J, Buschang PH, Behrents RG (2001) An evaluation of growth and stability in untreated and treated subjects. Am J Orthod Dentofac Orthop 120:588–597

    Article  CAS  Google Scholar 

  11. Sinclair PM, Little RM (1983) Maturation of untreated normal occlusions. Am J Orthod 83:114–123

    Article  PubMed  CAS  Google Scholar 

  12. King GJ, Latta L, Rutenberg J, Ossi A, Keeling SD (1997) Alveolar bone turnover and tooth movement in male rats after removal of orthodontic appliances. Am J Orthod Dentofac Orthop 111:266–275

    Article  CAS  Google Scholar 

  13. King GJ, Keeling SD, Wronski TJ (1991) Histomorphometric study of alveolar bone turnover in orthodontic tooth movement. Bone 12:401–409

    Article  PubMed  CAS  Google Scholar 

  14. Schwarz AM (1932) Tissue changes incident to orthodontic tooth movement. Int J Orthod 18:331–352

    Google Scholar 

  15. Stuteville OH (1938) A summary review of tissue changes incident to tooth movement. Angle Orthod 8:1–20

    Google Scholar 

  16. Storey E (1973) The nature of tooth movement. Am J Orthod 63:292–314

    Article  PubMed  CAS  Google Scholar 

  17. Kobayashi Y, Udagawa N, Takahashi N (2009) Action of RANKL and OPG for osteoclastogenesis. Crit Rev Eukaryot Gene Expr 19:61–72

    PubMed  CAS  Google Scholar 

  18. Anderson DM, Maraskovsky E, Billingsley WL, Dougall WC, Tometsko ME, Roux ER, Teepe MC, DuBose RF, Cosman D, Galibert L (1997) A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature 390:175–179

    Article  PubMed  CAS  Google Scholar 

  19. Grimaud E, Soubigou L, Couillaud S, Coipeau P, Moreau A, Passuti N, Gouin F, Redini F, Heymann D (2003) Receptor activator of nuclear factor kappaB ligand (RANKL)/osteoprotegerin (OPG) ratio is increased in severe osteolysis. Am J Pathol 163:2021–2031

    Article  PubMed  CAS  Google Scholar 

  20. Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Luthy R, Nguyen HQ, Wooden S, Bennett L, Boone T, Shimamoto G, DeRose M, Elliott R, Colombero A, Tan HL, Trail G, Sullivan J, Davy E, Bucay N, Renshaw-Gegg L, Hughes TM, Hill D, Pattison W, Campbell P, Sander S, Van G, Tarpley J, Derby P, Lee R, Boyle WJ (1997) Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89:309–319

    Article  PubMed  CAS  Google Scholar 

  21. Min H, Morony S, Sarosi I, Dunstan CR, Capparelli C, Scully S, Van G, Kaufman S, Kostenuik PJ, Lacey DL, Boyle WJ, Simonet WS (2000) Osteoprotegerin reverses osteoporosis by inhibiting endosteal osteoclasts and prevents vascular calcification by blocking a process resembling osteoclastogenesis. J Exp Med 192:463–474

    Article  PubMed  CAS  Google Scholar 

  22. Ominsky MS, Li X, Asuncion FJ, Barrero M, Warmington KS, Dwyer D, Stolina M, Geng Z, Grisanti M, Tan HL, Corbin T, McCabe J, Simonet WS, Ke HZ, Kostenuik PJ (2008) RANKL inhibition with osteoprotegerin increases bone strength by improving cortical and trabecular bone architecture in ovariectomized rats. J Bone Miner Res 23:672–682

    Article  PubMed  CAS  Google Scholar 

  23. Capparelli C, Morony S, Warmington K, Adamu S, Lacey D, Dunstan CR, Stouch B, Martin S, Kostenuik PJ (2003) Sustained antiresorptive effects after a single treatment with human recombinant osteoprotegerin (OPG): a pharmacodynamic and pharmacokinetic analysis in rats. J Bone Miner Res 18:852–858

    Article  PubMed  CAS  Google Scholar 

  24. Kostenuik PJ, Capparelli C, Morony S, Adamu S, Shimamoto G, Shen V, Lacey DL, Dunstan CR (2001) OPG and PTH-(1–34) have additive effects on bone density and mechanical strength in osteopenic ovariectomized rats. Endocrinology 142:4295–4304

    Article  PubMed  CAS  Google Scholar 

  25. Li X, Ominsky MS, Stolina M, Warmington KS, Geng Z, Niu QT, Asuncion FJ, Tan HL, Grisanti M, Dwyer D, Adamu S, Ke HZ, Simonet WS, Kostenuik PJ (2009) Increased RANK ligand in bone marrow of orchiectomized rats and prevention of their bone loss by the RANK ligand inhibitor osteoprotegerin. Bone 45:669–676

    Article  PubMed  CAS  Google Scholar 

  26. Bekker PJ, Holloway D, Nakanishi A, Arrighi M, Leese PT, Dunstan CR (2001) The effect of a single dose of osteoprotegerin in postmenopausal women. J Bone Miner Res 16:348–360

    Article  PubMed  CAS  Google Scholar 

  27. Bekker PJ, Holloway DL, Rasmussen AS, Murphy R, Martin SW, Leese PT, Holmes GB, Dunstan CR, DePaoli AM (2004) A single-dose placebo-controlled study of AMG 162, a fully human monoclonal antibody to RANKL, in postmenopausal women. J Bone Miner Res 19:1059–1066

    Article  PubMed  CAS  Google Scholar 

  28. Jin Q, Cirelli JA, Park CH, Sugai JV, Taba M Jr, Kostenuik PJ, Giannobile WV (2007) RANKL inhibition through osteoprotegerin blocks bone loss in experimental periodontitis. J Periodontol 78:1300–1308

    Article  PubMed  Google Scholar 

  29. Dunn MD, Park CH, Kostenuik PJ, Kapila S, Giannobile WV (2007) Local delivery of osteoprotegerin inhibits mechanically mediated bone modeling in orthodontic tooth movement. Bone 41:446–455

    Article  PubMed  CAS  Google Scholar 

  30. Kanzaki H, Chiba M, Takahashi I, Haruyama N, Nishimura M, Mitani H (2004) Local OPG gene transfer to periodontal tissue inhibits orthodontic tooth movement. J Dent Res 83:920–925

    Article  PubMed  CAS  Google Scholar 

  31. Kanzaki H, Chiba M, Arai K, Takahashi I, Haruyama N, Nishimura M, Mitani H (2006) Local RANKL gene transfer to the periodontal tissue accelerates orthodontic tooth movement. Gene Ther 13:678–685

    Article  PubMed  CAS  Google Scholar 

  32. King GJ, Fischlschweiger W (1982) The effect of force magnitude on extractable bone resorptive activity and cemental cratering in orthodontic tooth movement. J Dent Res 61:775–779

    Article  PubMed  CAS  Google Scholar 

  33. Park CH, Abramson ZR, Taba M Jr, Jin Q, Chang J, Kreider JM, Goldstein SA, Giannobile WV (2007) Three-dimensional micro-computed tomographic imaging of alveolar bone in experimental bone loss or repair. J Periodontol 78:273–281

    Article  PubMed  Google Scholar 

  34. Meganck JA, Kozloff KM, Thornton MM, Broski SM, Goldstein SA (2009) Beam hardening artifacts in micro-computed tomography scanning can be reduced by X-ray beam filtration and the resulting images can be used to accurately measure BMD. Bone 45:1104–1116

    Article  PubMed  Google Scholar 

  35. Sekhavat AR, Mousavizadeh K, Pakshir HR, Aslani FS (2002) Effect of misoprostol, a prostaglandin E1 analog, on orthodontic tooth movement in rats. Am J Orthod Dentofac Orthop 122:542–547

    Article  Google Scholar 

  36. Body JJ, Greipp P, Coleman RE, Facon T, Geurs F, Fermand JP, Harousseau JL, Lipton A, Mariette X, Williams CD, Nakanishi A, Holloway D, Martin SW, Dunstan CR, Bekker PJ (2003) A phase I study of AMGN-0007, a recombinant osteoprotegerin construct, in patients with multiple myeloma or breast carcinoma related bone metastases. Cancer 97:887–892

    Article  PubMed  Google Scholar 

  37. Kon T, Cho TJ, Aizawa T, Yamazaki M, Nooh N, Graves D, Gerstenfeld LC, Einhorn TA (2001) Expression of osteoprotegerin, receptor activator of NF-kappaB ligand (osteoprotegerin ligand) and related proinflammatory cytokines during fracture healing. J Bone Miner Res 16:1004–1014

    Article  PubMed  CAS  Google Scholar 

  38. Lewiecki EM (2009) Denosumab for joints and bones. Curr Rheumatol Rep 11:196–201

    Article  PubMed  CAS  Google Scholar 

  39. Ota N, Takaishi H, Kosaki N, Takito J, Yoda M, Tohmonda T, Kimura T, Okada Y, Yasuda H, Kawaguchi H, Matsumoto M, Chiba K, Ikegami H, Toyama Y (2009) Accelerated cartilage resorption by chondroclasts during bone fracture healing in osteoprotegerin-deficient mice. Endocrinology 150:4823–4834

    Article  PubMed  CAS  Google Scholar 

  40. Smith MR, Saad F, Egerdie B, Szwedowski M, Tammela TL, Ke C, Leder BZ, Goessl C (2009) Effects of denosumab on bone mineral density in men receiving androgen deprivation therapy for prostate cancer. J Urol 182:2670–2675

    Article  PubMed  CAS  Google Scholar 

  41. Terpos E, Szydlo R, Apperley JF, Hatjiharissi E, Politou M, Meletis J, Viniou N, Yataganas X, Goldman JM, Rahemtulla A (2003) Soluble receptor activator of nuclear factor kappaB ligand-osteoprotegerin ratio predicts survival in multiple myeloma: proposal for a novel prognostic index. Blood 102:1064–1069

    Article  PubMed  CAS  Google Scholar 

  42. Ulrich-Vinther M, Schwarz EM, Pedersen FS, Soballe K, Andreassen TT (2005) Gene therapy with human osteoprotegerin decreases callus remodeling with limited effects on biomechanical properties. Bone 37:751–758

    Article  PubMed  CAS  Google Scholar 

  43. Morony S, Capparelli C, Lee R, Shimamoto G, Boone T, Lacey DL, Dunstan CR (1999) A chimeric form of osteoprotegerin inhibits hypercalcemia and bone resorption induced by IL-1beta, TNF-alpha, PTH, PTHrP, and 1,25(OH)2D3. J Bone Miner Res 14:1478–1485

    Article  PubMed  CAS  Google Scholar 

  44. Kobayashi Y, Hashimoto F, Miyamoto H, Kanaoka K, Miyazaki-Kawashita Y, Nakashima T, Shibata M, Kobayashi K, Kato Y, Sakai H (2000) Force-induced osteoclast apoptosis in vivo is accompanied by elevation in transforming growth factor beta and osteoprotegerin expression. J Bone Miner Res 15:1924–1934

    Article  PubMed  CAS  Google Scholar 

  45. Kusumi A, Sakaki H, Kusumi T, Oda M, Narita K, Nakagawa H, Kubota K, Satoh H, Kimura H (2005) Regulation of synthesis of osteoprotegerin and soluble receptor activator of nuclear factor-kappaB ligand in normal human osteoblasts via the p38 mitogen-activated protein kinase pathway by the application of cyclic tensile strain. J Bone Miner Metab 23:373–381

    Article  PubMed  CAS  Google Scholar 

  46. Oshiro T, Shiotani A, Shibasaki Y, Sasaki T (2002) Osteoclast induction in periodontal tissue during experimental movement of incisors in osteoprotegerin-deficient mice. Anat Rec 266:218–225

    Article  PubMed  Google Scholar 

  47. Yamaguchi M, Aihara N, Kojima T, Kasai K (2006) RANKL increase in compressed periodontal ligament cells from root resorption. J Dent Res 85:751–756

    Article  PubMed  CAS  Google Scholar 

  48. Tan L, Ren Y, Wang J, Jiang L, Cheng H, Sandham A, Zhao Z (2009) Osteoprotegerin and ligand of receptor activator of nuclear factor kappaB expression in ovariectomized rats during tooth movement. Angle Orthod 79:292–298

    Article  PubMed  Google Scholar 

  49. Misawa Y, Kageyama T, Moriyama K, Kurihara S, Yagasaki H, Deguchi T, Ozawa H, Sahara N (2007) Effect of age on alveolar bone turnover adjacent to maxillary molar roots in male rats: a histomorphometric study. Arch Oral Biol 52:44–50

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

The authors express their sincere gratitude to Ms. Denise Dwyer for performing TRAP-5b and OPG assays and to Dr. Ingrid Bergin and Ms. Paula Arrowsmith for performing the histology. This study was supported by the University of Michigan Orthodontic Fund for Excellence, University of Michigan Le Gro Fund, Delta Dental Fund, and NIH R01 DE16671.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil Kapila.

Additional information

M. Stolina and P. J. Kostenuik are employees of Amgen and own Amgen stock. All other authors have stated that they have no conflict of interest.

This study received the American Association of Orthodontists 2011 Milo Hellman Award.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hudson, J.B., Hatch, N., Hayami, T. et al. Local Delivery of Recombinant Osteoprotegerin Enhances Postorthodontic Tooth Stability. Calcif Tissue Int 90, 330–342 (2012). https://doi.org/10.1007/s00223-012-9579-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-012-9579-4

Keywords

Navigation