Abstract
Relapse after orthodontic tooth movement is a significant problem in orthodontics. The purpose of this study was to examine the efficacy of the osteoclast inhibitor osteoprotegerin-Fc (OPG-Fc) for inhibiting postorthodontic relapse. Rat maxillary molars were moved mesially and allowed to relapse for 24 days. Low-dose (1 mg/kg) or high-dose (5 mg/kg) OPG-Fc or saline was injected adjacent to the molars during relapse. Tooth movement, micro-CT, histologic bone quality, and serum OPG and TRAP-5b were measured. OPG-Fc injections significantly diminished postorthodontic relapse from 63% (0.78/1.20 mm) of total movement in vehicle control rats to 31% (0.31/1.00 mm) in low-dose and 24% (0.28/1.16 mm) in high-dose OPG-Fc groups 24 days after appliance removal. Normalization of bone and periodontal tissues occurred as early as 8 and 16 days in the high- and low-dose OPG-Fc-treated groups, respectively, while the vehicle-treated group showed only partial tissue recovery 24 days following tooth movement. After 24 days of relapse, there was complete recovery to pre-tooth-movement values for bone volume fraction (BVF) and tissue mineral density (TMD) in both the low- and high-dose OPG-Fc groups, while BVF recovered only partially and TMD did not recover in the vehicle control group. Greatly elevated serum OPG levels and reduced serum TRAP-5b levels in OPG-Fc-treated animals indicated systemic exposure to locally injected drug. The profound decrease in postorthodontic relapse by local OPG-Fc administration indicates that osteoclasts are critical to bone maturation following tooth movement and points to the potential pharmacologic use of OPG-Fc or other RANKL inhibitors for orthodontic retention.
Similar content being viewed by others
References
Brodie AG (1952) Consideration of musculature in diagnosis, treatment, and retention. Am J Orthod 38:823–835
Proffit WR (1978) Equilibrium theory revisited: factors influencing position of the teeth. Angle Orthod 48:175–186
Bergstrom K, Jensen R, Martensson B (1973) The effect of superior labial frenectomy in cases with midline diastema. Am J Orthod 63:633–638
Reitan K (1951) The initial tissue reaction incident to orthodontic tooth movement as related to the influence of function: an experimental histologic study on animal and human material. Acta Odontol Scand Suppl 6:1–240
Reitan K (1959) Tissue rearrangement during retention of orthodontically rotated teeth. Angle Orthod 29:105–113
Reitan K (1969) Principles of retention and avoidance of posttreatment relapse. Am J Orthod 55:776–790
Grieve GW (1944) The stability of the treated denture. Am J Orthod Oral Surg 30:171–195
Tweed CH (1944) Indications for the extraction of teeth in orthodontic procedure. Am J Orthod 30:405–428
Strang RHW (1949) The fallacy of denture expansion as a treatment procedure. Angle Orthod 19:12–22
Driscoll-Gilliland J, Buschang PH, Behrents RG (2001) An evaluation of growth and stability in untreated and treated subjects. Am J Orthod Dentofac Orthop 120:588–597
Sinclair PM, Little RM (1983) Maturation of untreated normal occlusions. Am J Orthod 83:114–123
King GJ, Latta L, Rutenberg J, Ossi A, Keeling SD (1997) Alveolar bone turnover and tooth movement in male rats after removal of orthodontic appliances. Am J Orthod Dentofac Orthop 111:266–275
King GJ, Keeling SD, Wronski TJ (1991) Histomorphometric study of alveolar bone turnover in orthodontic tooth movement. Bone 12:401–409
Schwarz AM (1932) Tissue changes incident to orthodontic tooth movement. Int J Orthod 18:331–352
Stuteville OH (1938) A summary review of tissue changes incident to tooth movement. Angle Orthod 8:1–20
Storey E (1973) The nature of tooth movement. Am J Orthod 63:292–314
Kobayashi Y, Udagawa N, Takahashi N (2009) Action of RANKL and OPG for osteoclastogenesis. Crit Rev Eukaryot Gene Expr 19:61–72
Anderson DM, Maraskovsky E, Billingsley WL, Dougall WC, Tometsko ME, Roux ER, Teepe MC, DuBose RF, Cosman D, Galibert L (1997) A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature 390:175–179
Grimaud E, Soubigou L, Couillaud S, Coipeau P, Moreau A, Passuti N, Gouin F, Redini F, Heymann D (2003) Receptor activator of nuclear factor kappaB ligand (RANKL)/osteoprotegerin (OPG) ratio is increased in severe osteolysis. Am J Pathol 163:2021–2031
Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Luthy R, Nguyen HQ, Wooden S, Bennett L, Boone T, Shimamoto G, DeRose M, Elliott R, Colombero A, Tan HL, Trail G, Sullivan J, Davy E, Bucay N, Renshaw-Gegg L, Hughes TM, Hill D, Pattison W, Campbell P, Sander S, Van G, Tarpley J, Derby P, Lee R, Boyle WJ (1997) Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89:309–319
Min H, Morony S, Sarosi I, Dunstan CR, Capparelli C, Scully S, Van G, Kaufman S, Kostenuik PJ, Lacey DL, Boyle WJ, Simonet WS (2000) Osteoprotegerin reverses osteoporosis by inhibiting endosteal osteoclasts and prevents vascular calcification by blocking a process resembling osteoclastogenesis. J Exp Med 192:463–474
Ominsky MS, Li X, Asuncion FJ, Barrero M, Warmington KS, Dwyer D, Stolina M, Geng Z, Grisanti M, Tan HL, Corbin T, McCabe J, Simonet WS, Ke HZ, Kostenuik PJ (2008) RANKL inhibition with osteoprotegerin increases bone strength by improving cortical and trabecular bone architecture in ovariectomized rats. J Bone Miner Res 23:672–682
Capparelli C, Morony S, Warmington K, Adamu S, Lacey D, Dunstan CR, Stouch B, Martin S, Kostenuik PJ (2003) Sustained antiresorptive effects after a single treatment with human recombinant osteoprotegerin (OPG): a pharmacodynamic and pharmacokinetic analysis in rats. J Bone Miner Res 18:852–858
Kostenuik PJ, Capparelli C, Morony S, Adamu S, Shimamoto G, Shen V, Lacey DL, Dunstan CR (2001) OPG and PTH-(1–34) have additive effects on bone density and mechanical strength in osteopenic ovariectomized rats. Endocrinology 142:4295–4304
Li X, Ominsky MS, Stolina M, Warmington KS, Geng Z, Niu QT, Asuncion FJ, Tan HL, Grisanti M, Dwyer D, Adamu S, Ke HZ, Simonet WS, Kostenuik PJ (2009) Increased RANK ligand in bone marrow of orchiectomized rats and prevention of their bone loss by the RANK ligand inhibitor osteoprotegerin. Bone 45:669–676
Bekker PJ, Holloway D, Nakanishi A, Arrighi M, Leese PT, Dunstan CR (2001) The effect of a single dose of osteoprotegerin in postmenopausal women. J Bone Miner Res 16:348–360
Bekker PJ, Holloway DL, Rasmussen AS, Murphy R, Martin SW, Leese PT, Holmes GB, Dunstan CR, DePaoli AM (2004) A single-dose placebo-controlled study of AMG 162, a fully human monoclonal antibody to RANKL, in postmenopausal women. J Bone Miner Res 19:1059–1066
Jin Q, Cirelli JA, Park CH, Sugai JV, Taba M Jr, Kostenuik PJ, Giannobile WV (2007) RANKL inhibition through osteoprotegerin blocks bone loss in experimental periodontitis. J Periodontol 78:1300–1308
Dunn MD, Park CH, Kostenuik PJ, Kapila S, Giannobile WV (2007) Local delivery of osteoprotegerin inhibits mechanically mediated bone modeling in orthodontic tooth movement. Bone 41:446–455
Kanzaki H, Chiba M, Takahashi I, Haruyama N, Nishimura M, Mitani H (2004) Local OPG gene transfer to periodontal tissue inhibits orthodontic tooth movement. J Dent Res 83:920–925
Kanzaki H, Chiba M, Arai K, Takahashi I, Haruyama N, Nishimura M, Mitani H (2006) Local RANKL gene transfer to the periodontal tissue accelerates orthodontic tooth movement. Gene Ther 13:678–685
King GJ, Fischlschweiger W (1982) The effect of force magnitude on extractable bone resorptive activity and cemental cratering in orthodontic tooth movement. J Dent Res 61:775–779
Park CH, Abramson ZR, Taba M Jr, Jin Q, Chang J, Kreider JM, Goldstein SA, Giannobile WV (2007) Three-dimensional micro-computed tomographic imaging of alveolar bone in experimental bone loss or repair. J Periodontol 78:273–281
Meganck JA, Kozloff KM, Thornton MM, Broski SM, Goldstein SA (2009) Beam hardening artifacts in micro-computed tomography scanning can be reduced by X-ray beam filtration and the resulting images can be used to accurately measure BMD. Bone 45:1104–1116
Sekhavat AR, Mousavizadeh K, Pakshir HR, Aslani FS (2002) Effect of misoprostol, a prostaglandin E1 analog, on orthodontic tooth movement in rats. Am J Orthod Dentofac Orthop 122:542–547
Body JJ, Greipp P, Coleman RE, Facon T, Geurs F, Fermand JP, Harousseau JL, Lipton A, Mariette X, Williams CD, Nakanishi A, Holloway D, Martin SW, Dunstan CR, Bekker PJ (2003) A phase I study of AMGN-0007, a recombinant osteoprotegerin construct, in patients with multiple myeloma or breast carcinoma related bone metastases. Cancer 97:887–892
Kon T, Cho TJ, Aizawa T, Yamazaki M, Nooh N, Graves D, Gerstenfeld LC, Einhorn TA (2001) Expression of osteoprotegerin, receptor activator of NF-kappaB ligand (osteoprotegerin ligand) and related proinflammatory cytokines during fracture healing. J Bone Miner Res 16:1004–1014
Lewiecki EM (2009) Denosumab for joints and bones. Curr Rheumatol Rep 11:196–201
Ota N, Takaishi H, Kosaki N, Takito J, Yoda M, Tohmonda T, Kimura T, Okada Y, Yasuda H, Kawaguchi H, Matsumoto M, Chiba K, Ikegami H, Toyama Y (2009) Accelerated cartilage resorption by chondroclasts during bone fracture healing in osteoprotegerin-deficient mice. Endocrinology 150:4823–4834
Smith MR, Saad F, Egerdie B, Szwedowski M, Tammela TL, Ke C, Leder BZ, Goessl C (2009) Effects of denosumab on bone mineral density in men receiving androgen deprivation therapy for prostate cancer. J Urol 182:2670–2675
Terpos E, Szydlo R, Apperley JF, Hatjiharissi E, Politou M, Meletis J, Viniou N, Yataganas X, Goldman JM, Rahemtulla A (2003) Soluble receptor activator of nuclear factor kappaB ligand-osteoprotegerin ratio predicts survival in multiple myeloma: proposal for a novel prognostic index. Blood 102:1064–1069
Ulrich-Vinther M, Schwarz EM, Pedersen FS, Soballe K, Andreassen TT (2005) Gene therapy with human osteoprotegerin decreases callus remodeling with limited effects on biomechanical properties. Bone 37:751–758
Morony S, Capparelli C, Lee R, Shimamoto G, Boone T, Lacey DL, Dunstan CR (1999) A chimeric form of osteoprotegerin inhibits hypercalcemia and bone resorption induced by IL-1beta, TNF-alpha, PTH, PTHrP, and 1,25(OH)2D3. J Bone Miner Res 14:1478–1485
Kobayashi Y, Hashimoto F, Miyamoto H, Kanaoka K, Miyazaki-Kawashita Y, Nakashima T, Shibata M, Kobayashi K, Kato Y, Sakai H (2000) Force-induced osteoclast apoptosis in vivo is accompanied by elevation in transforming growth factor beta and osteoprotegerin expression. J Bone Miner Res 15:1924–1934
Kusumi A, Sakaki H, Kusumi T, Oda M, Narita K, Nakagawa H, Kubota K, Satoh H, Kimura H (2005) Regulation of synthesis of osteoprotegerin and soluble receptor activator of nuclear factor-kappaB ligand in normal human osteoblasts via the p38 mitogen-activated protein kinase pathway by the application of cyclic tensile strain. J Bone Miner Metab 23:373–381
Oshiro T, Shiotani A, Shibasaki Y, Sasaki T (2002) Osteoclast induction in periodontal tissue during experimental movement of incisors in osteoprotegerin-deficient mice. Anat Rec 266:218–225
Yamaguchi M, Aihara N, Kojima T, Kasai K (2006) RANKL increase in compressed periodontal ligament cells from root resorption. J Dent Res 85:751–756
Tan L, Ren Y, Wang J, Jiang L, Cheng H, Sandham A, Zhao Z (2009) Osteoprotegerin and ligand of receptor activator of nuclear factor kappaB expression in ovariectomized rats during tooth movement. Angle Orthod 79:292–298
Misawa Y, Kageyama T, Moriyama K, Kurihara S, Yagasaki H, Deguchi T, Ozawa H, Sahara N (2007) Effect of age on alveolar bone turnover adjacent to maxillary molar roots in male rats: a histomorphometric study. Arch Oral Biol 52:44–50
Acknowledgement
The authors express their sincere gratitude to Ms. Denise Dwyer for performing TRAP-5b and OPG assays and to Dr. Ingrid Bergin and Ms. Paula Arrowsmith for performing the histology. This study was supported by the University of Michigan Orthodontic Fund for Excellence, University of Michigan Le Gro Fund, Delta Dental Fund, and NIH R01 DE16671.
Author information
Authors and Affiliations
Corresponding author
Additional information
M. Stolina and P. J. Kostenuik are employees of Amgen and own Amgen stock. All other authors have stated that they have no conflict of interest.
This study received the American Association of Orthodontists 2011 Milo Hellman Award.
Rights and permissions
About this article
Cite this article
Hudson, J.B., Hatch, N., Hayami, T. et al. Local Delivery of Recombinant Osteoprotegerin Enhances Postorthodontic Tooth Stability. Calcif Tissue Int 90, 330–342 (2012). https://doi.org/10.1007/s00223-012-9579-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00223-012-9579-4