Skip to main content

Advertisement

Log in

Vitamin D Reduces Musculoskeletal Pain After Infusion of Zoledronic Acid for Postmenopausal Osteoporosis

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

The acute-phase response (APR) is a frequent occurrence after infusion of zoledronic acid and is caused by activation of γδ T cells. Vitamin D receptor is expressed in immune cells, and vitamin D has immunomodulatory properties. The aim of this prospective study was to test the effect of vitamin D (cholecalciferol) on the incidence of APR and intensity of pain in women undergoing infusion of zoledronic acid for postmenopausal osteoporosis. 60 women were enrolled and randomized into two groups. At baseline, 30 women received an oral bolus of cholecalciferol (300,000 IU), while another 30 women received placebo. On day 5 both groups were treated with a single infusion of zoledronic acid (5 mg) and received a daily supplementation of calcium (1,000 mg) and vitamin D (800 IU). Patients were clinically evaluated and inflammatory markers were assayed before zoledronic acid administration and every 24 h for the following 2 days. The onset of APR has been defined by the occurrence of fever or at least one of the typical symptoms, such as musculoskeletal pain after zoledronic acid infusion. Intensity of pain was measured by a one-dimensional scale (0 = no pain, 10 = unbearable pain). APR developed in 66.6% of patients, with no significant difference between groups. The vitamin group experienced less musculoskeletal pain [median 1 (0–4) vs. 2 (1–8), P < 0.05] and exhibited lower inflammatory markers (P < 0.005 vs. placebo). Our data demonstrate that cholecalciferol at a dose of 300,000 IU reduces the intensity of musculoskeletal pain after infusion of zoledronic acid for postmenopausal osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rachner TD, Khosla S, Hofbauer LC (2011) Osteoporosis: now and the future. Lancet 377(9773):1276–1287

    Article  PubMed  CAS  Google Scholar 

  2. Eastell R, Walsh JS, Watts NB, Siris E (2011) Bisphosphonates for postmenopausal osteoporosis. Bone 49(1):82–88

    Article  PubMed  CAS  Google Scholar 

  3. Black DM, Delmas PD, Eastell R, Reid IR, Boonen S, Cauley JA, Cosman F, Lakatos P, Leung PC, Man Z, Mautalen C, Mesenbrink P, Hu H, Caminis J, Tong K, Rosario-Jansen T, Krasnow J, Hue TF, Sellmeyer D, Eriksen EF, Cummings SR, HORIZON Pivotal Fracture Trial (2007) Once-yearly zoledronic acid for treatment of postmenopausal osteoporosis. N Engl J Med 356:1809–1822

    Article  PubMed  CAS  Google Scholar 

  4. Adami S, Bhalla AK, Dorizzi R, Montesanti F, Rosini S, Salvagno G, Lo Cascio V (1987) The acute phase response after bisphosphonates administration. Calcif Tissue Int 41:326–331

    Article  PubMed  CAS  Google Scholar 

  5. Strampel W, Emkey R, Civitelli R (2007) Safety considerations with bisphosphonates for the treatment of osteoporosis. Drug Saf 30:755–763

    Article  PubMed  CAS  Google Scholar 

  6. Rizzoli R, Reginster JY, Boonen S, Breart G, Diez-Perez A, Felsenberg D, Kaufman JM, Kanis JA, Cooper C (2011) Adverse reaction and drug–drug interactions in the management of women with postmenopausal osteoporosis. Calcif Tissue Int 89:91–104

    Article  PubMed  CAS  Google Scholar 

  7. Ceciliani F, Giordano A, Spagnolo V (2002) The systemic reaction during inflammation: the acute-phase proteins. Protein Pept Lett 9:211–223

    Article  PubMed  CAS  Google Scholar 

  8. Thiebaud D, Sauty A, Burckhardt P, Leuenberger P, Sitzler L, Green JR, Kandra A, Zieschang J, Ibarra de Palacios P (1997) An in vitro and in vivo study of cytokines in the acute-phase response associated with bisphosphonates. Calcif Tissue Int 61:386–392

    Article  PubMed  CAS  Google Scholar 

  9. Galluzzo S, Santini D, Vincenzi B, Caccamo N, Meraviglia F, Salerno A, Dieli F, Tonini G (2007) Immunomodulating role of bisphosphonates on human γ, δ T cells: an intriguing and promising aspect of their antitumour activity. Expert Opin Ther Targets 11:941–954

    Article  PubMed  CAS  Google Scholar 

  10. Roelofs AJ, Thompson K, Gordon S, Rogers MJ (2006) Molecular mechanisms of action of bisphosphonates: current status. Clin Cancer Res 12:6222–6230

    Article  Google Scholar 

  11. Hewitt RE, Lissina A, Green AE, Slay ES, Price DA, Sewell AK (2005) The bisphosphonate acute phase response: rapid and copious production of proinflammatory cytokines by peripheral blood γ, δ T cells in response to aminobisphosphonates is inhibited by statins. Clin Exp Immunol 139:101–111

    Article  PubMed  CAS  Google Scholar 

  12. Reid IR, Gamble GD, Mesenbrink P, Lakatos P, Black DM (2010) Characterization of and risk factors for the acute-phase response after zoledronic acid. J Clin Endocrinol Metab 95:4380–4387

    Article  PubMed  CAS  Google Scholar 

  13. Bertoldo F, Pancheri S, Zenari S, Boldini S, Giovanazzi B, Zanatta M, Valenti MT, Dalle Carbonare L, Lo Cascio V (2010) Serum 25-hydroxyvitamin D levels modulate the acute-phase response associated with the first nitrogen-containing bisphosphonate infusion. J Bone Miner Res 25(3):447–454

    Article  PubMed  CAS  Google Scholar 

  14. Srivastava T, Dai H, Haney CJ, Alon US (2011) Serum 25-hydroxyvitamin D level and acute-phase reaction following initial intravenous bisphosphonate. J Bone Miner Res 26(2):437–438

    Article  PubMed  CAS  Google Scholar 

  15. Wang T-T, Nestel FP, Bourdeau V, Nagai Y, Wang Q, Liao J, Tavera-Mendoza L, Lin R, Hanrahan JH, Mader S, White JH (2004) Cutting edge: 1,25-dihydroxyvitamin D3 is a direct inducer of antimicrobial peptide gene expression. J Immunol 173:2909–2912

    PubMed  CAS  Google Scholar 

  16. Mathieu C, Van Etten E, Gysemans C, Gysemans C, Decallonne B, Kato S, Laurevs J, Depovere J, Valckx D, Verstuyf A, Bouillon R (2001) In vitro and in vivo analysis of the immune system of vitamin D receptor knockout mice. J Bone Miner Res 16:2057–2065

    Article  PubMed  CAS  Google Scholar 

  17. Boonstra A, Barrat FJ, Crain C, Health VL, Savelkoul HF, O’Garra A (2001) 1α,25-Dihydroxyvitamin D3 has a direct effect on naive CD4+ T cells to enhance the development of Th2 cells. J Immunol 167:4974–4980

    PubMed  CAS  Google Scholar 

  18. Gregori S, Giarratana N, Smiroldo S, Uskokovic M, Adorini L (2002) A 1α,25-dihydroxyvitamin D3 analog enhances regulatory T cells and arrests autoimmune diabetes in NOD mice. Diabetes 51:1367–1374

    Article  PubMed  CAS  Google Scholar 

  19. Qi X-P, Pei L, Gang L, Sun Z, Li J-S (2008) 1,25-Dihydroxyvitamin D3 regulates LPS-induced cytokine production and reduces mortality in rats. World J Gastroenterol 14(24):3897–3902

    Article  PubMed  CAS  Google Scholar 

  20. Chen L, Cencioni MT, Angelini DF, Borsellino G, Battistini L, Brosnan CF (2005) Transcriptional profiling of γ, δ T cells identifies a role for vitamin D in the immunoregulation of the Vg9Vd2 response to phosphonate containing ligands. J Immunol 174(10):6144–6152

    PubMed  CAS  Google Scholar 

  21. Holick MF (2007) Vitamin D deficiency. N Engl J Med 357:266–281

    Article  PubMed  CAS  Google Scholar 

  22. Genant HK, Wu CY, van Kuijk C, Nevitt MC (1993) Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res 8(9):1137–1148

    Article  PubMed  CAS  Google Scholar 

  23. Thompson K, Rogers MJ (2004) Statins prevent bisphosphonate-induced γ, δ T-cell proliferation and activation in vitro. J Bone Miner Res 19(2):278–288

    Article  PubMed  CAS  Google Scholar 

  24. Edfeldt K, Liu PT, Chun R, Fabri M, Schenk M, Wheelwright M, Keegan C, Krutzik SR, Adams JS, Hewison M, Modlin RL (2010) T-cell cytokines differentially control human monocyte antimicrobial responses by regulating vitamin D metabolism. Proc Natl Acad Sci USA 107(52):22593–22598

    Article  PubMed  CAS  Google Scholar 

  25. Cipriani C, Romagnoli E, Scillitani A, Chiodini I, Clerico R, Carnevale V, Mascia ML, Battista C, Viti R, Pileri M, Eller-Vainicher C, Minisola S (2010) Effect of a single oral dose of 600,000 IU of cholecalciferol on serum calciotropic hormones in young subjects with vitamin D deficiency: a prospective intervention study. J Clin Endocrinol Metab 95(10):4771–4777

    Article  PubMed  CAS  Google Scholar 

  26. Romagnoli E, Mascia ML, Cipriani C, Fassino V, Mazzei F, D’Erasmo E, Carnevale V, Scillitani A, Minisola S (2008) Short and long term variations in serum calciotropic hormones after a single very large dose of ergocolecalciferol (vitamin D2) or cholecalciferol (vitamin D3) in the elderly. J Clin Endocrinol Metab 93:3015–3020

    Article  PubMed  CAS  Google Scholar 

  27. Araki T, Holick MF, Alfonso BD, Charlap E, Romero CM, Rizk D, Newman LG (2011) Vitamin D intoxication with severe hypercalcemia due to manufacturing and labeling errors of two dietary supplements made in the United States. J Clin Endocrinol Metab. doi:10.1210/jc.2011-1443

  28. Penna G, Adorini L (2000) 1α,25-Dihydroxyvitamin D3 inhibits differentiation, maturation, activation, and survival of dendritic cells leading to impaired alloreactive T cell activation. J Immunol 164:2405–2411

    PubMed  CAS  Google Scholar 

  29. Griffin MD, Lutz W, Phan VA, Bachman LA, McKean DJ, Kumar R (2001) Dendritic cell modulation by 1α,25 dihydroxyvitamin D3 and its analogs: a vitamin D receptor-dependent pathway that promotes a persistent state of immaturity in vitro and in vivo. Proc Natl Acad Sci USA 98:6800–6805

    Article  PubMed  CAS  Google Scholar 

  30. Overbergh L, Decallonne B, Waer M, Rutgeerts O, Valckx D, Casteels KM, Laureys J, Bouillon R, Mathieu C (2000) 1α,25-Dihydroxyvitamin D3 induces an autoantigen-specific T-helper 1/T-helper 2 immune shift in NOD mice immunized withGAD65 (p524–543). Diabetes 49:1301–1307

    Article  PubMed  CAS  Google Scholar 

  31. Woodhouse PR, Khaw KT, Plummer M, Foley A, Meade TW (1994) Seasonal variations of plasma fibrinogen and factor VII activity in the elderly: winter infections and death from cardiovascular disease. Lancet 343:435–439

    Article  PubMed  CAS  Google Scholar 

  32. Rothenbacher D, Hoffmeister A, Brenner H, Koenig W (2003) Physical activity, coronary heart disease, and inflammatory response. Arch Intern Med 163:1200–1205

    Article  PubMed  Google Scholar 

  33. Reuben DB, Judd-Hamilton L, Harris TB, Seeman TE (2003) The associations between physical activity and inflammatory markers in high functioning older persons: McArthur studies of successful aging. J Am Geriatr Soc 51:1125–1130

    Article  PubMed  Google Scholar 

  34. Koenig W, Sund M, Doring A, Ernst E (1997) Leisure time physical activity but not work related physical activity is associated with decreased plasma viscosity: results from a large population sample. Circulation 95:335–341

    PubMed  CAS  Google Scholar 

  35. Yarnell JW, Sweetnam PM, Rumley A, Lowe GD (2000) Lifestyle and hemostatic risk factors for ischemic heart disease: the Caerphilly study. Arterioscler Thromb Vasc Biol 20:271–279

    Article  PubMed  CAS  Google Scholar 

  36. Moreno J, Krishnan AV, Swami S, Nonn L, Peehl DM, Feldman D (2005) Regulation of prostaglandin metabolism by calcitriol attenuates growth stimulation in prostate cancer cells. Cancer Res 65(17):7917–7925

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonino Catalano.

Additional information

The authors have stated that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Catalano, A., Morabito, N., Atteritano, M. et al. Vitamin D Reduces Musculoskeletal Pain After Infusion of Zoledronic Acid for Postmenopausal Osteoporosis. Calcif Tissue Int 90, 279–285 (2012). https://doi.org/10.1007/s00223-012-9577-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-012-9577-6

Keywords

Navigation