Skip to main content

Advertisement

Log in

Loss of Bone Strength is Dependent on Skeletal Site in Disuse Osteoporosis in Rats

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Intramuscular injection with botulinum toxin A (BTX) leads to a transient paralysis of the muscles, resulting in a rapid loss of muscle mass and function as well as rapid bone loss (disuse osteoporosis). The purpose of this study was to investigate the temporal development and the site specificity of BTX-induced immobilization on bone strength at five skeletal sites. Three-month-old rats (n = 108) were randomized into nine groups: one served as baseline, while four were injected with BTX and four with saline in the right hind-limb musculature. Animals were killed after 1, 2, 3, or 4 weeks. BTX-induced a significant loss of rectus femoris muscle mass (−61%) and muscle cell cross-sectional area (−59%) as well as bone strength at the femoral neck (−31%), femoral diaphysis (−6%), distal femoral metaphysis (−17%), proximal tibial metaphysis (−31%), and tibial diaphysis (−13%) after 4 weeks. Muscle atrophy occurred in parallel with the bone loss at the femoral neck and proximal tibia, whereas it occurred earlier than the bone loss at the other skeletal sites. At the proximal tibial metaphysis BTX significantly decreased BV/TV (−10%), trabecular thickness (−13%), and bone formation (MS/BS −25%, BFR/BS −50%) and increased osteoclast covered surfaces (+97%) after 4 weeks. In conclusion, BTX-induced a time-dependent loss of bone strength. Moreover, the loss of bone strength differed significantly at the five tested skeletal sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jiang SD, Dai LY, Jiang LS (2006) Osteoporosis after spinal cord injury. Osteoporos Int 17:180–192

    Article  PubMed  Google Scholar 

  2. Minaire P, Neunier P, Edouard C, Bernard J, Courpron P, Bourret J (1974) Quantitative histological data on disuse osteoporosis: comparison with biological data. Calcif Tissue Res 17:57–73

    Article  PubMed  CAS  Google Scholar 

  3. Hansson TH, Roos BO, Nachemson A (1975) Development of osteopenia in the fourth lumbar vertebra during prolonged bed rest after operation for scoliosis. Acta Orthop Scand 46:621–630

    Article  PubMed  CAS  Google Scholar 

  4. Krølner B, Toft B (1983) Vertebral bone loss: an unheeded side effect of therapeutic bed rest. Clin Sci (Lond) 64:537–540

    Google Scholar 

  5. Leblanc AD, Schneider VS, Evans HJ, Engelbretson DA, Krebs JM (1990) Bone mineral loss and recovery after 17 weeks of bed rest. J Bone Miner Res 5:843–850

    Article  PubMed  CAS  Google Scholar 

  6. Thomsen JS, Morukov BV, Vico L, Alexandre C, Saparin PI, Gowin W (2005) Cancellous bone structure of iliac crest biopsies following 370 days of head-down bed rest. Aviat Space Environ Med 76:915–922

    PubMed  Google Scholar 

  7. Vico L, Chappard D, Alexandre C, Palle S, Minaire P, Riffat G, Morukov B, Rakhmanov S (1987) Effects of a 120 day period of bed-rest on bone mass and bone cell activities in man: attempts at countermeasure. Bone Miner 2:383–394

    PubMed  CAS  Google Scholar 

  8. Rittweger J, Beller G, Armbrecht G, Mulder E, Buehring B, Gast U, Dimeo F, Schubert H, de Haan A, Stegeman DF, Schiessl H, Felsenberg D (2010) Prevention of bone loss during 56 days of strict bed rest by side-alternating resistive vibration exercise. Bone 46:137–147

    Article  PubMed  Google Scholar 

  9. Zeng QQ, Jee WS, Bigornia AE, King JG Jr, D’Souza SM, Li XJ, Ma YF, Wechter WJ (1996) Time responses of cancellous and cortical bones to sciatic neurectomy in growing female rats. Bone 19:13–21

    Article  PubMed  CAS  Google Scholar 

  10. Verhaeghe J, Thomsen JS, van Bree R, van Herck E, Bouillon R, Mosekilde L (2000) Effects of exercise and disuse on bone remodeling, bone mass, and biomechanical competence in spontaneously diabetic female rats. Bone 27:249–256

    Article  PubMed  CAS  Google Scholar 

  11. Armstrong WD (1946) Bone growth in paralyzed limbs. Proc Soc Exp Biol Med 61:358–362

    PubMed  CAS  Google Scholar 

  12. Allison N, Brooks B (1921) Bone atrophy: an experimental and clinical study of the changes in bone which result from non-use. Surg Gynecol Obstet 33:250–260

    CAS  Google Scholar 

  13. Morey ER, Sabelman EE, Turner RT, Baylink DJ (1979) A new rat model simulating some aspects of space flight. Physiologist 22:S23–S24

    PubMed  CAS  Google Scholar 

  14. Morey-Holton ER, Globus RK (1998) Hindlimb unloading of growing rats: a model for predicting skeletal changes during space flight. Bone 22:83S–88S

    Article  PubMed  CAS  Google Scholar 

  15. Laib A, Barou O, Vico L, Lafage-Proust MH, Alexandre C, Rügsegger P (2000) 3D micro-computed tomography of trabecular and cortical bone architecture with application to a rat model of immobilisation osteoporosis. Med Biol Eng Comput 38:326–332

    Article  PubMed  CAS  Google Scholar 

  16. Orimo H, Fujita T, Yoshikawa M, Hayano K, Sakurada T (1971) Effect of estrogen on immobilization osteoporosis in rat. Endocrinology 88:102–105

    Article  PubMed  CAS  Google Scholar 

  17. Mosekilde L, Thomsen JS, Mackey MS, Phipps RJ (2000) Treatment with risedronate or alendronate prevents hind-limb immobilization-induced loss of bone density and strength in adult female rats. Bone 27:639–645

    Article  PubMed  CAS  Google Scholar 

  18. Akamine T, Jee WSS, Ke HZ, Li XJ, Lin BY (1992) Prostaglandin E2 prevents bone loss and adds extra bone to immobilized distal femoral metaphysis in female rats. Bone 13:11–22

    Article  PubMed  CAS  Google Scholar 

  19. Lindgren U (1976) The effect of thyroparathyroidectomy: development of disuse osteoporosis in adult rats. Clin Orthop Relat Res 118:251–256

    PubMed  Google Scholar 

  20. Chappard D, Chennebault A, Moreau M, Legrand E, Audran M, Basle MF (2001) Texture analysis of X-ray radiographs is a more reliable descriptor of bone loss than mineral content in a rat model of localized disuse induced by the Clostridium botulinum toxin. Bone 28:72–79

    Article  PubMed  CAS  Google Scholar 

  21. Dickson EC, Shevky E (1923) Botulism. Studies on the manner in which the toxin of Clostridium botulinum acts upon the body: II. The effect upon the voluntary nervous system. J Exp Med 38:327–346

    Article  PubMed  CAS  Google Scholar 

  22. Breidenbach MA, Brunger AT (2005) New insights into clostridial neurotoxin–SNARE interactions. Trends Mol Med 11:377–381

    Article  PubMed  CAS  Google Scholar 

  23. Huang W, Foster JA, Rogachefsky AS (2000) Pharmacology of botulinum toxin. J Am Acad Dermatol 43:249–259

    Article  PubMed  CAS  Google Scholar 

  24. Alderson K, Holds JB, Anderson RL (1991) Botulinum-induced alteration of nerve–muscle interactions in the human orbicularis oculi following treatment for blepharospasm. Neurology 41:1800–1805

    PubMed  CAS  Google Scholar 

  25. Blouin S, Moreau MF, Weiss P, Daculsi G, Baslé MF, Chappard D (2006) Evaluation of an injectable bone substitute (betaTCP/hydroxyapatite/hydroxy-propyl-methyl-cellulose) in severely osteopenic and aged rats. J Biomed Mater Res A 78:570–580

    PubMed  CAS  Google Scholar 

  26. Blouin S, Gallois Y, Moreau MF, Baslé MF, Chappard D (2007) Disuse and orchidectomy have additional effects on bone loss in the aged male rat. Osteoporos Int 18:85–92

    Article  PubMed  CAS  Google Scholar 

  27. Libouban H, Blouin S, Moreau MF, Baslé MF, Audran M, Chappard D (2008) Effects of risedronate in a rat model of osteopenia due to orchidectomy and disuse: densitometric, histomorphometric and microtomographic studies. Micron 39:998–1007

    Article  PubMed  CAS  Google Scholar 

  28. Agholme F, Isaksson H, Kuhstoss S, Aspenberg P (2011) The effects of Dickkopf-1 antibody on metaphyseal bone and implant fixation under different loading conditions. Bone 48:988–996

    Article  PubMed  CAS  Google Scholar 

  29. Agholme F, Isaksson H, Li X, Ke HZ, Aspenberg P (2011) Anti-sclerostin antibody and mechanical loading appear to influence metaphyseal bone independently in rats. Acta Orthop 82:628–632

    Article  PubMed  Google Scholar 

  30. Warner SE, Sanford DA, Becker BA, Bain SD, Srinivasan S, Gross TS (2006) Botox induced muscle paralysis rapidly degrades bone. Bone 38:257–264

    Article  PubMed  CAS  Google Scholar 

  31. Grimston SK, Silva MJ, Civitelli R (2007) Bone loss after temporarily induced muscle paralysis by Botox is not fully recovered after 12 weeks. Ann N Y Acad Sci 1116:444–460

    Article  PubMed  CAS  Google Scholar 

  32. Poliachik SL, Bain SD, Threet D, Huber P, Gross TS (2010) Transient muscle paralysis disrupts bone homeostasis by rapid degradation of bone morphology. Bone 46:18–23

    Article  PubMed  Google Scholar 

  33. Manske SL, Boyd SK, Zernicke RF (2010) Muscle and bone follow similar temporal patterns of recovery from muscle-induced disuse due to botulinum toxin injection. Bone 46:24–31

    Article  PubMed  CAS  Google Scholar 

  34. Gross TS, Poliachik SL, Prasad J, Bain SD (2010) The effect of muscle dysfunction on bone mass and morphology. J Musculoskelet Neuronal Interact 10:25–34

    PubMed  CAS  Google Scholar 

  35. Manske SL, Boyd SK, Zernicke RF (2010) Muscle changes can account for bone loss after botulinum toxin injection. Calcif Tissue Int 87:541–549

    Article  PubMed  CAS  Google Scholar 

  36. Rauch F, Hamdy R (2006) Effect of a single botulinum toxin injection on bone development in growing rabbits. J Musculoskelet Neuronal Interact 6:264–268

    PubMed  CAS  Google Scholar 

  37. Mosekilde L, Thomsen JS, Orhii PB, McCarter RJ, Mejia W, Kalu DN (1999) Additive effect of voluntary exercise and growth hormone treatment on bone strength assessed at four different skeletal sites in an aged rat model. Bone 24:71–80

    Article  PubMed  CAS  Google Scholar 

  38. Mosekilde L, Thomsen JS, Orhii PB, Kalu DN (1998) Growth hormone increases vertebral and femoral bone strength in osteopenic, ovariectomized, aged rats in a dose-dependent and site-specific manner. Bone 23:343–352

    Article  PubMed  CAS  Google Scholar 

  39. Institute of Laboratory Animal Resources (1996) Guide for the care and use of laboratory animals. National Academy Press, Washington DC

    Google Scholar 

  40. Gundersen HJG, Jensen EB (1987) The efficiency of systematic sampling in stereology and its prediction. J Microsc 147:229–263

    Article  PubMed  CAS  Google Scholar 

  41. Gundersen HJG (1988) The nucleator. J Microsc 151:3–21

    Article  PubMed  CAS  Google Scholar 

  42. Turner CH, Burr DB (1993) Basic biomechanical measurements of bone: a tutorial. Bone 14:595–608

    Article  PubMed  CAS  Google Scholar 

  43. Thomsen JS, Laib A, Koller B, Prohaska S, Mosekilde L, Gowin W (2005) Stereological measures of trabecular bone structure: comparison of 3D micro computed tomography with 2D histological sections in human proximal tibial bone biopsies. J Microsc 218:171–179

    Article  PubMed  CAS  Google Scholar 

  44. Oxlund H, Ejersted C, Andreassen TT, Torring O, Nilsson MH (1993) Parathyroid hormone (1–34) and (1–84) stimulate cortical bone formation both from periosteum and endosteum. Calcif Tissue Int 53:394–399

    PubMed  CAS  Google Scholar 

  45. Karsdal MA, Henriksen K, Sorensen MG, Gram J, Schaller S, Dziegiel MH, Heegaard AM, Christophersen P, Martin TJ, Christiansen C, Bollerslev J (2005) Acidification of the osteoclastic resorption compartment provides insight into the coupling of bone formation to bone resorption. Am J Pathol 166:467–476

    Article  PubMed  CAS  Google Scholar 

  46. Neutzsky-Wulff AV, Karsdal MA, Henriksen K (2008) Characterization of the bone phenotype in ClC-7-deficient mice. Calcif Tissue Int 83:425–437

    Article  PubMed  CAS  Google Scholar 

  47. Mosekilde L (1995) Assessing bone quality—animal models in preclinical osteoporosis research. Bone 17:343S–352S

    Article  PubMed  CAS  Google Scholar 

  48. Lin BY, Jee WSS, Chen MM, Ma YF, Ke HZ, Li XJ (1994) Mechanical loading modifies ovariectomy-induced cancellous bone loss. Bone Miner 25:199–210

    Article  PubMed  CAS  Google Scholar 

  49. Rajapakse CS, Thomsen JS, Espinoza Ortiz JS, Wimalawansa SJ, Ebbesen EN, Mosekilde L, Gunaratne GH (2004) An expression relating breaking stress and density of trabecular bone. J Biomech 37:1241–1249

    Article  PubMed  Google Scholar 

  50. LeBlanc A, Marsh C, Evans H, Johnson P, Schneider V, Jhingran S (1985) Bone and muscle atrophy with suspension of the rat. J Appl Physiol 58:1669–1675

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the excellent technical assistance of Jytte Utoft and Maj-Britt Lundorf. Dr. Kim Henriksen (Nordic Bioscience) is gratefully acknowledged for providing the biochemical analyses of serum. We thank Visiopharm for a contribution to the newCAST stereology software system. The μCT scanner was donated by the VELUX Foundation. The study was kindly supported by The A.P. Møller Foundation for the Advancement of Medical Science and Aarhus University Research Foundation. The Centre for Stochastic Geometry and Advanced Bioimaging is supported by the Villum Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesper Skovhus Thomsen.

Additional information

The authors have stated that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomsen, J.S., Christensen, L.L., Vegger, J.B. et al. Loss of Bone Strength is Dependent on Skeletal Site in Disuse Osteoporosis in Rats. Calcif Tissue Int 90, 294–306 (2012). https://doi.org/10.1007/s00223-012-9576-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-012-9576-7

Keywords

Navigation