Skip to main content

Advertisement

Log in

Intrinsic Material Properties of Trabecular Bone by Nanoindentation Testing of Biopsies Taken from Healthy Women Before and After Menopause

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Postmenopausal osteoporosis in women is characterized by an increase in bone fragility and risk of fracture. In addition to transmenopausal decline in three-dimensional trabecular bone architecture, changes in intrinsic material properties (local stiffness, damping, and hardness) may contribute to increased bone fragility. In this study, nanoindentation was used to quantify transmenopausal changes in the intrinsic properties of trabecular bone. Paired transilial biopsy specimens were used from a previously reported study in which bone biopsies were obtained from women prior to menopause (premenopausal, age 49.0 ± 1.9) and at 12 months past the last menstrual period (postmenopausal, age 54.6 ± 2.2). Elastic and viscoelastic material properties of the trabecular bone were measured using quasi-static and dynamic nanoindentation techniques, respectively. Paired Student’s t tests (n = 15) were performed to assess the significance of the measured intrinsic properties. Trabecular bone microarchitecture is compromised in postmenopausal women, and although this loss is associated with a trend toward reduction in some intrinsic properties (storage modulus), we found no statistically significant changes in bone intrinsic properties between healthy pre- and postmenopausal biopsies in the quasi-static results and frequency-averaged dynamic results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Currey JD (2005) Hierarchies in biomineral structures. Science 309:253–254

    Article  PubMed  CAS  Google Scholar 

  2. Viguet-Carrin S, Garnero P, Delmas PD (2005) The role of collagen in bone strength. Osteoporos Int 17:319–336

    Article  PubMed  Google Scholar 

  3. Donnelly E, Chen DX, Boskey AL, Baker SP, van der Meulen MCH (2010) Contribution of mineral to bone structural behavior and tissue mechanical properties. Calcif Tissue Int 87:540–560

    Article  Google Scholar 

  4. Donnelly E (2011) Methods for assessing bone quality: a review. Clin Orthop Relat Res 469:2128–2138

    Article  PubMed  Google Scholar 

  5. Meema S, Meema HE (1976) Menopausal bone loss and estrogen replacement. Isr J Med Sci 12:601–606

    PubMed  CAS  Google Scholar 

  6. Lindsay R, Hart DM, Aitken JM, MacDonald EB, Anderson JB, Clarke AC (1976) Long-term prevention of postmenopausal osteoporosis by oestrogen. Evidence for an increased bone mass after delayed onset of oestrogen treatment. Lancet 1:1038–1041

    Article  PubMed  CAS  Google Scholar 

  7. Recker RR, Saville PD, Heaney RP (1977) Effect of estrogens and calcium carbonate on bone loss in post-menopausal women. Ann Intern Med 87:649–655

    PubMed  CAS  Google Scholar 

  8. Ettinger B, Pressman A, Sklarin P, Bauer DC, Cauley JA, Cummings SR (1998) Associations between low levels of serum estradiol, bone density, and fractures among elderly women: the study of osteoporotic fractures. J Clin Endocrinol Metab 83:2239–2243

    Article  PubMed  CAS  Google Scholar 

  9. Lips P, Taconis WK, van Ginkel FC, Netelenbos JC (1984) Radiologic morphometry in patients with femoral neck fractures and elderly control subjects. Comparison with histomorphometric parameters. Clin Orthop Relat Res 183:64–70

    PubMed  Google Scholar 

  10. Ross PD, Davis JW, Epstein RS, Wasnich RD (1991) Pre-existing fractures and bone mass predict vertebral fracture incidence in women. Ann Intern Med 114:919–923

    PubMed  CAS  Google Scholar 

  11. Melton LJ, Khosla S, Atkinson EJ, O’Fallon WM, Riggs BL (1997) Relationship of bone turnover to bone density and fractures. J Bone Miner Res 12:1083–1091

    Article  PubMed  Google Scholar 

  12. Sinaki M (1998) Musculoskeletal challenges of osteoporosis. Aging (Milano) 10:249–262

    CAS  Google Scholar 

  13. Guthrie JR, Dennerstein L, Wark JD (2000) Risk factors for osteoporosis: a review. Medscape Womens Health 5:E1–E9

    PubMed  CAS  Google Scholar 

  14. Arlot ME, Jiang Y, Genant HK, Zhao J, Burt-Pichart B, Roux JP, Delmas PD, Meunier PJ (2008) Histo-morphometric and CT analysis of bone biopsies from postmenopausal osteoporotic women treated with strontium ranelate. J Bone Miner Res 23:215–222

    Article  PubMed  CAS  Google Scholar 

  15. Recker R, Lappe J, Davies KM, Heaney R (2004) Bone remodeling increases substantially in the years after menopause and remains increased in older osteoporosis patients. J Bone Miner Res 19:1628–1633

    Article  PubMed  Google Scholar 

  16. Akhter MP, Lappe JM, Davies KM, Recker RR (2007) Transmenopausal changes in the trabecular bone structure. Bone 41:111–116

    Article  PubMed  CAS  Google Scholar 

  17. Bailey AJ, Wotton SF, Sims TJ, Thompson PW (1992) Post-translational modifications in the collagen of human osteoporotic femoral head. Biochem Biophys Res Commun 185:801–805

    Article  PubMed  CAS  Google Scholar 

  18. Bailey AJ, Wotton SF, Sims TJ, Thompson PW (1993) Biochemical changes in the collagen of human osteoporotic bone matrix. Connect Tissue Res 29:119–132

    Article  PubMed  CAS  Google Scholar 

  19. Oxlund H, Barckman M, Ortoft G, Andreassen TT (1995) Reduced concentrations of collagen cross-links are associated with reduced strength of bone. Bone 17(suppl 4):365S–371S

    PubMed  CAS  Google Scholar 

  20. Franzoso G, Zysset PK (2009) Elastic anisotropy of human cortical bone secondary osteons measured by nanoindentation. J Biomed Eng 131:021001–021011

    Google Scholar 

  21. Rho J-Y, Tsui TY, Pharr GM (1997) Elastic properties of human cortical and trabecular lamellar bone measured by nanoindentation. Biomaterials 18:1325–1330

    Article  PubMed  CAS  Google Scholar 

  22. Rho J-Y, Roy MEI, Tsui TY, Pharr GM (1999) Elastic properties of microstructural components of human bone tissue as measured by nanoindentation. J Biomed Mater Res A 45:48–54

    Article  CAS  Google Scholar 

  23. Zysset PK, Guo XE, Ho-er CE, Moore KE, Goldstein SA (1999) Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur. J Biomech 32:1005–1012

    Article  PubMed  CAS  Google Scholar 

  24. Hengsberger S, Kulik A, Zysset Ph (2001) A combined atomic force microscopy and nanoindentation technique to investigate the elastic properties of bone structural units. Eur Cells Mater 1:12–17

    CAS  Google Scholar 

  25. Hensberger S, Kulik A, Zysset Ph (2002) Nanoindentation discriminates the elastic properties of individual human bone lamellae under dry and physiological conditions. Bone 30:178–184

    Article  Google Scholar 

  26. Oyen ML, Ferguson VL, Bembey AK, Bushby AJ, Boyde A (2008) Composite bounds on the elastic modulus of bone. J Biomech 41:2585–2588

    Article  PubMed  Google Scholar 

  27. Fratzl-Zelman N, Roschger P, Gourrier A, Weber M, Misof BM, Loveridge N, Reeve J, Klaushofer K, Fratzl P (2009) Combination of nanoindentation and quantitative backscattered electron imaging revealed altered bone material properties associated with femoral neck fragility. Calcif Tissue Int 85:335–343

    Article  PubMed  CAS  Google Scholar 

  28. Ferguson VL, Bushby AJ, Boyde A (2003) Nanomechanical properties and mineral concentration in articular calcified cartilage and subchondral bone. J Anat 203:191–202

    Article  PubMed  Google Scholar 

  29. Bembey AK, Oyen ML, Bushby AJ, Boyde A (2006) Viscoelastic properties of bone as a function of hydration state determined by nanoindentation. Philos Mag 86(33–35):5691–5703

    Article  CAS  Google Scholar 

  30. Gupta HS, Schratter S, Tesch W, Roschger P, Berzlanonich A, Schoeberl T, Klaushofer K, Fratzl P (2005) Two different correlation between nanoindentation modulus and mineral content in the bone–cartilage interface. J Struct Biol 149:138–148

    Article  PubMed  CAS  Google Scholar 

  31. Hauch KH, Oyen ML, Odegard GM, Haut Donahue TL (2009) Nanoindentation of the insertional zones of human meniscal attachment into underlying bone. J Mech Behav Biomed Mater 2(4):339–347

    Article  PubMed  CAS  Google Scholar 

  32. Swadener JG, Rho JY, Pharr GM (2001) Effects of anisotropy on elastic moduli measured by nanoindentation in human tibial cortical bone. J Biomed Mater Res 57:108–112

    Article  PubMed  CAS  Google Scholar 

  33. Rho J, Currey JD, Zioupos P, Pharr GM (2001) The anisotropic Young’s modulus of equine secondary osteones and interstitial bone determined by nanoindentation. J Exp Biol 204:1775–1781

    PubMed  CAS  Google Scholar 

  34. Hengsberger S, Enstroem J, Peyrin F, Zysset Ph (2003) How is indentation modulus of bone related to its macroscopic elastic response? A validation study. J Biomech 36:1503–1509

    Article  PubMed  CAS  Google Scholar 

  35. Yuya PA, Amborn EK, Beatty MW, Turner JA (2010) Evaluating anisotropic properties in the porcine temporomandibular joint disc using nanoindentation. Ann Biomed Eng 38:2428–2437

    Article  PubMed  CAS  Google Scholar 

  36. Donnelly E, Baker SP, Boskey AL, van der Meulen MCH (2006) Effects of surface roughness and maximum load on the mechanical properties of cancellous bone measured by nanoindentation. J Biomed Res A 77:426–435

    Article  Google Scholar 

  37. Bembey AK, Bushby AJ, Boyde A, Ferguson VL, Oyen ML (2006) Hydration effects on the micro-mechanical properties of bone. J Mater Res 21:1962–1968

    Article  CAS  Google Scholar 

  38. Paietta RC, Campbell SE, Ferguson VL (2011) Influences of spherical tip radius, contact depth, and contact area on nanoindentation properties of bone. J Biomech 44:285–290

    Article  PubMed  Google Scholar 

  39. Oyen ML (2006) Nanoindentation hardness of mineralized tissues. J Biomech 39:2699–2702

    Article  PubMed  Google Scholar 

  40. Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7:1564–1583

    Article  CAS  Google Scholar 

  41. Asif SAS, Wahl KJ, Colton RJ (1999) Nanoindentation and contact stiffness measurement using force modulation with a capacitive load–displacement transducer. Rev Sci Instrum 70:2408–2413

    Article  CAS  Google Scholar 

  42. Christensen RM (2003) Theory of viscoelasticity, 2nd edn. Dover, New York

    Google Scholar 

  43. Hysitron, Inc (2007) Bio Ubi VII user’s manual. Hysitron, Minneapolis, MN

    Google Scholar 

  44. Guo XE, Goldstein SA (2000) Vertebral trabecular bone microscopic tissue elastic modulus and hardness do not change in ovariectomized rats. J Orthop Res 18:333–336

    Article  PubMed  CAS  Google Scholar 

  45. Hengsberger S, Ammann P, Legros B, Rizzoli R, Zysset P (2005) Intrinsic bone tissue properties in adult rat vertebrae: modulation by dietary protein. Bone 36:134–141

    Article  PubMed  CAS  Google Scholar 

  46. Wang X, Rao DS, Ajdelszta L, Ciarelli TE, Lavernia EJ, Fyhrie DP (2008) Human iliac crest cancellous bone elastic modulus and hardness differ with bone formation rate per bone surface but not by existence of prevalent vertebral fracture. J Biomed Mater Res B 85:68–77

    Google Scholar 

  47. Sutton-Smith P, Beard H, Fazzalari N (2008) Quantitative backscattered electron imaging of bone in proximal femur fragility fracture and medical illness. J Microsc 229:60–66

    Article  PubMed  CAS  Google Scholar 

  48. Boivin G, Bala Y, Doublier A, Farlay D, Ste-Marie LG, Meunier PJ, Delmas PD (2008) The role of mineralization and organic matrix in the microhardness of bone tissue from controls and osteoporotic patients. Bone 43:532–538

    Article  PubMed  CAS  Google Scholar 

  49. Donnelly E, Williams RM, Downs SA, Dickinson ME, Baker SP, van der Meulen MCH (2006) Quasistatic and dynamic nanomechanical properties of cancellous bone tissue relate to collagen content and organization. J Mater Res 21:2106–2117

    Article  CAS  Google Scholar 

  50. Les CM, Vance JL, Christopherson GT, Turner AS, Divine GW, Fyhrie DP (2005) Long-term ovariectomy decreases ovine compact bone viscoelasticity. J Orthop Res 23:869–876

    Article  PubMed  CAS  Google Scholar 

  51. Yamashita J, Furman BR, Rawls HR, Wang X, Agrawal CM (2001) The use of dynamic mechanical analysis to assess the viscoelastic properties of human cortical bone. J Biomed Mater Res A 58:47–53

    Article  CAS  Google Scholar 

  52. Mulder L, Koolstra JH, den Toonder J, van Eijden T (2007) Intratrabecular distribution of tissue stiffness and mineralization in developing trabecular bone. Bone 41:256–265

    Article  PubMed  Google Scholar 

  53. Boskey AL, DiCarlo E, Paschalis E, West P, Mendelsohn R (2005) Comparison of mineral quality and quantity in iliac crest biopsies from high- and low-turnover osteoporosis: an FT-IR microspectroscopic investigation. Osteoporos Int 16:2031–2038

    Article  PubMed  CAS  Google Scholar 

  54. Rho J-Y, Pharr GM (1999) Effects of drying on the mechanical properties of bovine femur measured by nanoindentation. J Mater Sci 10:485–488

    Article  CAS  Google Scholar 

  55. Bushby A, Ferguson V, Boyde A (2004) Nanoindentation of bone: comparison of specimens tested in liquid and embedded in polymethylmethacrylate. J Mater Res 19:249–259

    Article  CAS  Google Scholar 

  56. Yamashita J, Li X, Furman BR, Rawls HR, Wang X, Agrawal CM (2002) Collagen and bone viscoelasticity: a dynamic mechanical analysis. J Biomed Mater Res A 63:31–36

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph A. Turner.

Additional information

The authors have stated that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Polly, B.J., Yuya, P.A., Akhter, M.P. et al. Intrinsic Material Properties of Trabecular Bone by Nanoindentation Testing of Biopsies Taken from Healthy Women Before and After Menopause. Calcif Tissue Int 90, 286–293 (2012). https://doi.org/10.1007/s00223-012-9575-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-012-9575-8

Keywords

Navigation