Skip to main content

Advertisement

Log in

Skeletal Remodeling Following Clinically Relevant Radiation-Induced Bone Damage Treated with Zoledronic Acid

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Our aim was to determine if zoledronic acid (ZA) changes 45Ca pharmacokinetics and bone microstructure in irradiated, ovary-intact (I) and irradiated, ovariectomized mice (OVX), two groups with different patterns of skeletal damage. The hind limbs of I and OVX BALB/c mice received a single 16-Gy radiation dose, simulating pre- and postmenopausal female cancer patients undergoing radiation treatment. All I and OVX mice were radiolabeled with 15 μCi 45Ca. Mice were treated with or without a 0.5 mg/kg injection of ZA. The time course of bone mineral remodeling was evaluated using a fecal 45Ca assay, measured by liquid scintillation. A group of nonirradiated, intact mice were used for the longitudinal evaluation of 45Ca biodistribution. Distal femur bone histomorphometric parameters were measured using microCT at 50 days post–ZA intervention. Most 45Ca was incorporated into the skeleton and eliminated from the soft tissues within 3–5 days postirradiation, attaining a steady state of excretion at 25–30 days. ZA intervention in both groups resulted in a rapid decrease in fecal 45Ca excretion. There was a significant difference in 45Ca excretion in the OVX ± ZA (P = 0.005) group but not in the I ± ZA (P = 0.655) group. The rate of excretion of fecal 45Ca was slower in the OVX + ZA compared to the I + ZA group (P = 0.064). 45Ca assay is useful to monitor the time course of bone mineral remodeling after an antiresorptive intervention in irradiated mice, providing a basis to investigate bone effects of cancer therapy protocols. For equivalent doses of ZA, recovery may depend on the nature and degree of skeletal damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Garnero P, Buchs N, Zekri J, Rizzoli R, Coleman RE, Delmas PD (2000) Markers of bone turnover for the management of patients with bone metastases from prostate cancer. Br J Cancer 82:858–864

    Article  PubMed  CAS  Google Scholar 

  2. Johnell O, Oden A, De Laet C, Garnero P, Delmas P, Kanis J (2002) Biochemical indices of bone turnover and the assessment of fracture probability. Osteoporos Int 13:523–526

    Article  PubMed  CAS  Google Scholar 

  3. Heaney RP (2003) Is the paradigm shifting? Bone 33:457–465

    Article  PubMed  Google Scholar 

  4. Seeman E, Delmas P (2006) Bone quality—the material and structural basis of bone strength and fragility. N Engl J Med 354:2250

    Article  PubMed  CAS  Google Scholar 

  5. Riis BJ, Hansen MA, Jensen AM, Overgaard K, Christiansen C (1996) Low bone mass and fast rate of bone loss at menopause: equal risk factors for future fracture: a 15-year follow-up study. Bone 19:9–12

    Article  PubMed  CAS  Google Scholar 

  6. Riggs BL, Melton LJ III (2002) Bone turnover matters: the raloxifene treatment paradox of dramatic decreases in vertebral fractures without commensurate increases in bone density. J Bone Miner Res 17:11–14

    Article  PubMed  Google Scholar 

  7. Guise T (2006) Bone loss and fracture risk associated with cancer therapy. Oncologist 11:1121–1131

    Article  PubMed  CAS  Google Scholar 

  8. Baxter N, Habermann E, Tepper J, Durham S, Virnig B (2005) Risk of pelvic fractures in older women following pelvic irradiation. JAMA 294:2587

    Article  PubMed  CAS  Google Scholar 

  9. Small W Jr, Kachnic L (2005) Postradiotherapy pelvic fractures: cause for concern or opportunity for future research? JAMA 294:2635

    Article  PubMed  CAS  Google Scholar 

  10. Adams J, Alsop C, Harrison E, Lernbass I, Davies M, Cann C, Selby P (2000) Quantitative computed tomography (QCT): The forgotten gold standard? J Bone Miner Res 15:1122–1123

    Google Scholar 

  11. Keaveny T, Kopperdahl D, Melton L III, Hoffmann P, Amin S, Riggs B, Khosla S (2010) Age-dependence of femoral strength in white women and men. J Bone Miner Res 25:994–1001

    Article  PubMed  Google Scholar 

  12. Hui SK, Khalil A, Zhang Y, Coghill K, Le C, Dusenbery K, Froelich J, Yee D, Levi D (2010) Longitudinal assessment of bone loss from diagnostic CT scans in gynecologic cancer patients treated with chemotherapy and radiation. Am J Obstet Gynecol 203:353.e1–7

    Google Scholar 

  13. Denk E, Hillegonds D, Hurrell RF, Vogel J, Fattinger K, Hauselmann HJ, Kraenzlin M, Walczyk T (2007) Evaluation of 41calcium as a new approach to assess changes in bone metabolism: effect of a bisphosphonate intervention in postmenopausal women with low bone mass. J Bone Miner Res 22:1518–1525

    Article  PubMed  CAS  Google Scholar 

  14. Hui S, Prior J, Gelbart Z, Johnson R, Lentle B, Paul M (2007) A pilot study of the feasibility of long-term human bone balance during perimenopause using a 41Ca tracer. Nucl Instrum Methods Phys Res B 259:796–800

    Article  CAS  Google Scholar 

  15. Elmore D, Bhattacaryya MH, Gibson NS (1990) 41Ca as a long-term biological tracer for bone resorption. Nucl Instr Methods 52:531–535

    Article  Google Scholar 

  16. Green JR, Rogers MJ (2002) Pharmacologic profile of zoledronic acid: a highly potent inhibitor of bone resorption. Drug Dev Res 55:210–224

    Article  CAS  Google Scholar 

  17. Knight L, Kurbacher C, Glaysher S, Fernando A, Reichelt R, Dexel S, Reinhold U, Cree I (2009) Activity of mevalonate pathway inhibitors against breast and ovarian cancers in the ATP-based tumour chemosensitivity assay. BMC Cancer 9:38

    Article  PubMed  Google Scholar 

  18. Morgan C, Lewis PD, Jones RM, Bertelli G, Thomas GA, Leonard RCF (2007) The in vitro anti-tumour activity of zoledronic acid and docetaxel at clinically achievable concentrations in prostate cancer. Acta Oncol 46:669–677

    Article  PubMed  CAS  Google Scholar 

  19. Nyangoga H, Blouin S, Libouban H, Baslé MF, Chappard D (2010) A single pretreatment by zoledronic acid converts metastases from osteolytic to osteoblastic in the rat. Microsc Res Tech 73:733–740

    PubMed  CAS  Google Scholar 

  20. Fowler J (2006) Development of radiobiology for oncology—a personal view. Physics Med Biol 51:263

    Article  Google Scholar 

  21. Ma C (2000) AAPM TG-61 report on kilovoltage X-ray dosimetry: formalisms and applications. IEEE Eng Med Biol Mag 3:2308–2312

    Google Scholar 

  22. Seuntjens J (2000) AAPM TG-61 report on kilovoltage X-ray dosimetry. II. Calibration procedures and correction factors. IEEE Eng Med Biol Mag 3:2313–2316

    Google Scholar 

  23. Pozzi S, Vallet S, Mukherjee S, Cirstea D, Vaghela N, Santo L, Rosen E, Ikeda H, Okawa Y, Kiziltepe T (2009) High-dose zoledronic acid impacts bone remodeling with effects on osteoblastic lineage and bone mechanical properties. Clin Cancer Res 15:5829

    Article  PubMed  CAS  Google Scholar 

  24. Bouxsein M, Boyd S, Christiansen B, Guldberg R, Jepsen K, Müller R (2010) Guidelines for assessment of bone microstructure in rodents using microcomputed tomography. J Bone Miner Res 25:1468–1486

    Article  PubMed  Google Scholar 

  25. Wang C, Bhattacharyya M (1993) Effect of cadmium on bone calcium and 45Ca in nonpregnant mice on a calcium-deficient diet: evidence of direct effect of cadmium on bone. Toxicol Appl Pharmacol 120:228–239

    Article  PubMed  CAS  Google Scholar 

  26. Shahnazari M, Burr DB, Lee WH, Martin BR, Weaver CM (2010) Cross-calibration of 45calcium kinetics against dynamic histomorphometry in a rat model to determine bone turnover. Bone 46:1238–1243

    Article  PubMed  CAS  Google Scholar 

  27. Weitzmann MN, Pacifici R (2006) Estrogen deficiency and bone loss: an inflammatory tale. J Clin Invest 116:1186

    Article  PubMed  CAS  Google Scholar 

  28. Gadeleta S, Boskey A, Paschalis E, Carlson C, Menschik F, Baldini T, Peterson M, Rimnac C (2000) A physical, chemical, and mechanical study of lumbar vertebrae from normal, ovariectomized, and nandrolone decanoate-treated cynomolgus monkeys (Macaca fascicularis). Bone 27:541–550

    Article  PubMed  CAS  Google Scholar 

  29. Bala Y, Farlay D, Chapurlat R, Boivin G (2011) Modifications of bone material properties in postmenopausal osteoporotic women long-term treated with alendronate. Eur J Endocrinol 165:647–655

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This study was supported by the National Institutes of Health (grants 1R03AR055333-01A1 and 1K12-HD055887-01), by PHS Cancer Center Support grant P30 CA77398, and by the Joseph E. Wargo Cancer Research Fund from the University of Minnesota. S. K. H. is a scholar of the Building Interdisciplinary Careers in Women’s Health program. The authors thank Dr. Seymour Levitt for fruitful discussion of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanta K. Hui.

Additional information

The authors have stated that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hui, S.K., Fairchild, G.R., Kidder, L.S. et al. Skeletal Remodeling Following Clinically Relevant Radiation-Induced Bone Damage Treated with Zoledronic Acid. Calcif Tissue Int 90, 40–49 (2012). https://doi.org/10.1007/s00223-011-9547-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-011-9547-4

Keywords

Navigation