Skip to main content

Advertisement

Log in

Structural Water in Carbonated Hydroxylapatite and Fluorapatite: Confirmation by Solid State 2H NMR

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Water is well recognized as an important component in bone, typically regarded as a constituent of collagen, a pore-filling fluid in bone, and an adsorbed species on the surface of bone crystallites. The possible siting and role of water within the structure of the apatite crystallites have not been fully explored. In our experiments, carbonated hydroxyl- and fluorapatites were prepared in D2O and characterized by elemental analysis, thermal gravimetric analysis, powder X-ray diffraction, and infrared and Raman spectroscopy. Two hydroxylapatites and two fluorapatites, with widely different amounts of carbonate were analyzed by solid state 2H NMR spectroscopy using the quadrupole echo pulse sequence, and each spectrum showed one single line as well as a low-intensity powder pattern. The relaxation time of 7.1 ms for 5.9 wt% carbonated hydroxylapatite indicates that the single line is likely due to rapid, high-symmetry jumps in translationally rigid D2O molecules, indicative of structural incorporation within the lattice. Discrimination between structurally incorporated and adsorbed water is enhanced by the rapid exchange of surface D2O with atmospheric H2O. Moreover, a 2H resonance was observed for samples dried under a variety of conditions, including in vacuo heating to 150°C. In contrast, a sample heated to 500°C produced no deuterium resonance, indicating that structural water had been released by that temperature. We propose that water is located in the c-axis channels. Because structural water is observed even for apatites with very low carbonate content, some of the water molecules must lie between the monovalent ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Roseberry HH, Hastings AB, Morse JK (1931) X-ray analysis of bone and teeth. J Biol Chem 90:395–407

    CAS  Google Scholar 

  2. Beevers CA, McIntyre DB (1946) The atomic structure of fluor-apatite and its relation to that of tooth and bone material. Miner Mag 27:254–257

    Article  CAS  Google Scholar 

  3. McConnell D (1962) The crystal structure of bone. Clin Orthopaedics 23:253–268

    Google Scholar 

  4. Elliott JC (2002) Calcium phosphate biominerals. In: Kohn MJ, Rakovan J, Hughes JM (eds) Phosphates—geochemical, geobiological, and materials importance. Reviews in mineralogy and geochemistry 48. Mineralogical Society of America, Chantilly, pp 427–453

    Google Scholar 

  5. Pan Y, Fleet ME (2002) Compositions of the apatite-group minerals: substitution mechanisms and controlling factors. In: Kohn MJ, Rakovan J, Hughes JM (eds) Phosphates—geochemical, geobiological, and materials importance. Reviews in mineralogy and geochemistry 48. Mineralogical Society of America, Chantilly, pp 13–49

    Google Scholar 

  6. LeGeros RZ, Trautz OR, Klein E, LeGeros JP (1969) Two types of carbonate substitution in the apatite structure. Experientia 25:5–7

    Article  PubMed  CAS  Google Scholar 

  7. Elliott JC (1994) Structure and chemistry of the apatites and other calcium orthophosphates. Elsevier, New York

    Google Scholar 

  8. Fleet ME, Liu X (2007) Coupled substitution of type A and B carbonate in sodium-bearing apatite. Biomaterials 28:916–926

    Article  PubMed  CAS  Google Scholar 

  9. Cheng ZH, Yasukawa A, Kandori K, Ishikawa T (1998) FTIR study on incorporation of CO2 into calcium hydroxyapatite. J Chem Soc Faraday Trans 94:1501–1505

    Article  Google Scholar 

  10. Ishikawa T, Termachi A, Hidekazu T, Yasukawa A, Kandori K (2000) Fourier transform infrared spectroscopy of deuteration of calcium hydroxyapatite particles. Langmuir 16:10221–10226

    Article  CAS  Google Scholar 

  11. Joris SJ, Amberg CH (1971) The nature of the deficiency in nonstoichiometric hydroxyapatite. II. Spectroscopic studies of calcium and strontium hydroxyapatite. J Phys Chem 75:3172–3178

    Article  CAS  Google Scholar 

  12. McConnell D (1970) Crystal chemistry of bone mineral: hydrated carbonate apatites. Am Miner 55:1659–1669

    CAS  Google Scholar 

  13. Simpson DR (1964) The nature of alkali carbonate apatites. Am Miner 49:363–376

    CAS  Google Scholar 

  14. Biltz RM, Pellegrino ED (1971) The hydroxyl content of calcified tissue mineral. Calcif Tissue Int 36:259–263

    Google Scholar 

  15. LeGeros RZ, Bonel G, Legros R (1978) Types of “H2O” in human enamel and in precipitated apatites. Calcif Tissue Int 26:111–118

    Article  CAS  Google Scholar 

  16. Ivanova TI, Frank-Kamenetaskaya OV, Kol’tsov AB, Ugolkov VL (2001) Crystal structure of calcium-deficient carbonated hydroxyapatite. Thermal decomposition. J Solid State Chem 160:340–349

    Article  CAS  Google Scholar 

  17. Wilson RM, Dowker SEP, Elliott JC (2006) Rietveld refinements and spectroscopic structural studies of a Na-free carbonate apatite made by hydrolysis of monetite. Biomaterials 27:4682–4692

    Article  PubMed  CAS  Google Scholar 

  18. Wilson RM, Elliott JC, Dowker SEP, Smith RI (2004) Rietveld structure refinement of precipitated carbonate apatite using neutron diffraction data. Biomaterials 25:2205–2213

    Article  PubMed  CAS  Google Scholar 

  19. Yesinowski J, Eckert H (1987) Hydrogen environments in calcium phosphates-1H MAS NMR at high spin speeds. J Am Chem Soc 109:6274–6282

    Article  CAS  Google Scholar 

  20. Kaflak-Hachulska A, Samoson A, Kolodziejski W (2003) 1H MAS and 1H CP/MAS NMR study of human bone mineral. Calcif Tissue Int 73:476–486

    Article  PubMed  CAS  Google Scholar 

  21. Santos RA, Wind RA, Bronnimann CE (1994) 1H CRAMPS and 1H–31P Hetcor experiments on bone, bone mineral, and model calcium phosphate phases. J Magn Reson B 105:183–187

    Article  PubMed  CAS  Google Scholar 

  22. Kolmas J, Kolodziejski W (2007) Concentration of hyroxyl groups in dental apatites: a solid-state 1H MAS NMR study using inverse 31P → 1H cross-polarization. Chem Commun (Camb) 42:4390–4392

    Google Scholar 

  23. Sfihi H, Rey C (2002) 1-D and 2-D double heteronuclear magnetic resonance study of the local structure of type B carbonate fluoroapatite. In: Fraissard J, Lapina B (eds) Magnetic resonance in colloid and interface science. NATO ASI Series II, vol 76. Kluwer Academic, New York, pp 409–422

    Google Scholar 

  24. Jäger C, Welzel T, Meyer-Zalka W, Epple M (2006) A solid-state NMR investigation of the structure of nanocrystalline hydroxyapatite. Magn Reson Chem 44:573–580

    Article  PubMed  Google Scholar 

  25. Cho G, Wu Y, Ackerman JL (2003) Detection of hydroxyl ions in bone mineral by solid-state NMR spectroscopy. Science 300:1123–1127

    Article  PubMed  CAS  Google Scholar 

  26. Sandström DE, Jarlbring M, Antzutkin ON, Forsling W (2006) A spectroscopic study of calcium surface sites and adsorbed iron species at aqueous fluorapatite by means of 1H and 31P MAS NMR. Langmuir 22:11060–11064

    Article  PubMed  Google Scholar 

  27. Jarlbring M, Sandström DE, Antzutkin ON, Forsling W (2006) Characterization of active phosphorus surface sites at synthetic carbonate-free fluorapatite using single-pulse 1H, 31P, and 31P CP MAS NMR. Langmuir 22:4787–4792

    Article  PubMed  CAS  Google Scholar 

  28. Rey C, Combes C, Drouet C, Sfihi H, Barroug A (2007) Physico-chemical properties of nanocrystalline apatites: implications for biominerals and biomaterials. Mater Sci Eng 27:198–205

    Article  CAS  Google Scholar 

  29. Wilson EE, Awonusi A, Morris MD, Kohn DH, Tecklenburg MMJ, Beck LW (2006) Three structural roles for water in bone observed by solid-state NMR. Biophys J 90:3722–3731

    Article  PubMed  CAS  Google Scholar 

  30. Mason HE, McCubbin FM, Smirnov A, Phillips BL (2009) Solid-state NMR and IR spectroscopic investigation of the role of structural water and F in carbonate-rich fluorapatite. Am Miner 94:507–516

    Article  CAS  Google Scholar 

  31. Reyes-Casga J, Garcia-Garcia R, Arellano-Jimenez MJ, Sanchez-Pastenes E, Tiznado-Orozco GE, Gill-Chavarria IM, Gomez-Casga G (2008) Structural and thermal behaviour of human tooth and three synthetic hydroxyapaties from 20 to 600°C. J Phys D Appl Phys 41:225407–225418

    Article  Google Scholar 

  32. Jonas K, Vassanyi I, Ungvari I (1980) The study of synthetic carbonate–hydroxyapatites and dental enamels by IR and derivatographic methods. Phys Chem Miner 6:55–60

    Article  CAS  Google Scholar 

  33. Kaflak A, Kolodziejski W (2011) Complimentary information on water and hydroxyl groups in nanocrystalline carbonated hydroxyapatites from TGA NMR and IR measurements. J Mol Struct 990:263–270

    Article  CAS  Google Scholar 

  34. Rey C, Combes C, Drouet C, Glimcher MJ (2009) Bone mineral: update on chemical composition and structure. Osteoporosis Int 20:1013–1021

    Article  CAS  Google Scholar 

  35. Mitchell PCH, Parker SF, Simkiss K, Simmons J, Taylor MG (1996) Hydrated sites in biogenic amorphous calcium phosphates: an infrared, Raman, and inelastic neutron scattering study. J Inorg Biochem 62:83–187

    Article  Google Scholar 

  36. Wopenka B, Pasteris JD (2005) A mineralogical perspective on the apatite in bone. Mater Sci Eng C Mater Biol Appl 25:131–143

    Article  Google Scholar 

  37. Casciani FS (1971) Identification of hydrate water in enamel, dentine, cementum, and bone. In: Fearnhead RW, Stack MV (eds) Tooth Enamel II. John Wright & Sons, Bristol

    Google Scholar 

  38. Wittebort RJ, Usha MG, Ruben DJ, Wemmer DE, Pines A (1988) Observation of molecular reorientation in ice by proton and deuterium magnetic resonance. J Am Chem Soc 110:5668–5671

    Article  CAS  Google Scholar 

  39. Benesi AJ, Gruktzeck MW, O’Hare B, Phair JW (2005) Room-temperature icelike water in kanemite detected by 2H NMR T1 relaxation. Langmuir 21:527–529

    Article  PubMed  CAS  Google Scholar 

  40. Weiss A, Weiden N (1980) Deuteron magnetic resonance in crystal hydrates. In: Smith JAS (ed) Advances in nuclear quadrupole resonance, vol 4. Heyden & Sons, London

    Google Scholar 

  41. Reeves LW (1969) The study of water in hydrate crystals by nuclear magnetic resonance. In: Emsley JW, Feeney J, Sutcliffe LH (eds) Progress in NMR spectroscopy, vol 4. Pergammon Press, Oxford

    Google Scholar 

  42. Benesi AJ, Grutzeck MW, O’Hare B, Phair JW (2004) Room temperature solid surface water with tetrahedral jumps of 2H nuclei detected in 2H2O hydrated porous silicates. J Phys Chem B 108:17783–17790

    Article  CAS  Google Scholar 

  43. Wilson RM, Elliott JC, Dowker SEP (2003) Formate incorporation in the structure of Ca-deficient apatite: Rietveld structure refinement. J Solid State Chem 174:132–140

    Article  CAS  Google Scholar 

  44. Greenfield DJ, Termine JD, Eanes ED (1974) A chemical study of apatites prepared by hydrolysis of amorphous calcium phosphates in carbonate-containing aqueous solutions. Calcif Tissue Int 14:131–138

    Article  CAS  Google Scholar 

  45. Wu Y, Ackerman JL, Kim H-M, Rey C, Barroug A, Glimcher MJ (2002) Nuclear magnetic resonance spin-spin relaxation of the crystals of bone, dental enamel, and synthetic hydroxyapatites. J Bone Miner Res 17:472–480

    Article  PubMed  CAS  Google Scholar 

  46. De Maeyer EAP, Verbeeck RMH, Naessens DE (1993) Stoichiometry of Na+- and CO3 2−-containing apatites obtained by hydrolysis of monetite. Inorg Chem 32:5709–5714

    Article  Google Scholar 

  47. Krajewski A, Mazzocchi M, Buldini PL, Ravaglioli A, Tinti A, Taddei P, Fagnano C (2005) Synthesis of carbonated hydroxyapatites: efficiency of the substitution and critical evaluation of analytical methods. J Mol Struct 744–747:221–228

    Article  Google Scholar 

  48. Graziano G (2006) Water: cavity size distribution and hydrogen bonds. Chem Phys Lett 396:226–231

    Article  Google Scholar 

Download references

Acknowledgments

The authors are indebted to Dr. Alan Benesi of Pennsylvania State University for acquisition of NMR spectra and helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claude H. Yoder.

Additional information

The authors have stated that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoder, C.H., Pasteris, J.D., Worcester, K.N. et al. Structural Water in Carbonated Hydroxylapatite and Fluorapatite: Confirmation by Solid State 2H NMR. Calcif Tissue Int 90, 60–67 (2012). https://doi.org/10.1007/s00223-011-9542-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-011-9542-9

Keywords

Navigation