Calcified Tissue International

, Volume 89, Issue 2, pp 172–177 | Cite as

Clinical Risk Factors for Osteoporosis in Ireland and the UK: A Comparison of FRAX and QFractureScores

  • N. M. Cummins
  • E. K. Poku
  • M. R. Towler
  • O. M. O’Driscoll
  • S. H. Ralston
Original Research

Abstract

Recently two algorithms have become available to estimate the 10-year probability of fracture in patients suspected to have osteoporosis on the basis of clinical risk factors: the FRAX algorithm and QFractureScores algorithm (QFracture). The aim of this study was to compare the performance of these algorithms in a study of fracture patients and controls recruited from six centers in the United Kingdom and Ireland. A total of 246 postmenopausal women aged 50–85 years who had recently suffered a low-trauma fracture were enrolled and their characteristics were compared with 338 female controls who had never suffered a fracture. Femoral bone mineral density was measured by dual-energy X-ray absorptiometry, and fracture risk was calculated using the FRAX and QFracture algorithms. The FRAX algorithm yielded higher scores for fracture risk than the QFracture algorithm. Accordingly, the risk of major fracture in the overall study group was 9.5% for QFracture compared with 15.2% for FRAX. For hip fracture risk the values were 2.9% and 4.7%, respectively. The correlation between FRAX and QFracture was R = 0.803 for major fracture and R = 0.857 for hip fracture (P ≤ 0.0001). Both algorithms yielded high specificity but poor sensitivity for prediction of osteoporosis. We conclude that the FRAX and QFracture algorithms yield similar results in the estimation of fracture risk. Both of these tools could be of value in primary care to identify patients in the community at risk of osteoporosis and fragility fractures for further investigation and therapeutic intervention.

Keywords

Clinical risk factor Osteoporosis Fracture FRAX QFractureScores 

References

  1. 1.
    Melton LJ, Atkinson EJ, O’Connor MK, O’Fallon WM, Riggs BL (1998) Bone density and fracture risk in men. J Bone Miner Res 13:1915–1923PubMedCrossRefGoogle Scholar
  2. 2.
    Kanis JA, Johnell O, Oden A, Sembo I, Redlund-Johnell I et al (2000) Long-term risk of osteoporotic fracture in Malmö. Osteoporos Int 11:669–674PubMedCrossRefGoogle Scholar
  3. 3.
    Schuit SC, Van der Klift M, Weel AE, De Laet C, Burger H et al (2004) Fracture incidence and association with bone mineral density in elderly mean and women: the Rotterdam study. Bone 34:195–202PubMedCrossRefGoogle Scholar
  4. 4.
    Organisation World Health (2004) WHO Scientific Group on the Assessment of Osteoporosis at Primary Health Care Level. WHO, BrusselsGoogle Scholar
  5. 5.
    Kanis JA, Johnell O, De Laet C, Johansson H, Oden A et al (2004) A meta-analysis of previous fracture and subsequent fracture risk. Bone 35:375–382PubMedCrossRefGoogle Scholar
  6. 6.
    Kanis JA, Johansson H, Oden A, Johnell O, De Laet C et al (2004) A family history of fracture and fracture risk: a meta-analysis. Bone 35:1029–1037PubMedCrossRefGoogle Scholar
  7. 7.
    Kanis JA, Johansson H, Oden A, Johnell O, de Laet C et al (2004) A meta-analysis of prior corticosteroid use and fracture risk. J Bone Miner Res 19:893–899PubMedCrossRefGoogle Scholar
  8. 8.
    Kanis JA, Johnell O, Oden A, Johansson H, De Laet C et al (2005) Smoking and fracture risk: a meta-analysis. Osteoporos Int 16:222–228PubMedCrossRefGoogle Scholar
  9. 9.
    Kanis JA, Johansson H, Johnell O, Oden A, De Laet C et al (2005) Alcohol intake as a risk factor for fracture. Osteoporos Int 16:737–742PubMedCrossRefGoogle Scholar
  10. 10.
    Kanis JA, Johansson H, Oden A, De Laet C, Johnell O et al (2005) A meta-analysis of milk intake and fracture risk: low utility for case finding. Osteoporos Int 16:799–804PubMedCrossRefGoogle Scholar
  11. 11.
    De Laet C, Kanis JA, Odén A, Johanson H, Johnell O et al (2005) Body mass index as a predictor of fracture risk: a meta-analysis. Osteoporos Int 16:1330–1338PubMedCrossRefGoogle Scholar
  12. 12.
    De Laet C, Odén A, Johansson H, Johnell O, Jönsson B et al (2005) The impact of the use of multiple risk indicators for fracture on case-finding strategies: a mathematical approach. Osteoporos Int 16:313–318PubMedCrossRefGoogle Scholar
  13. 13.
    Kanis JA, Borgstrom F, De Laet C, Johansson H, Johnell O et al (2005) Assessment of fracture risk. Osteoporos Int 16:581–589PubMedCrossRefGoogle Scholar
  14. 14.
    Kanis JA, Oden A, Johnell O, Johansson H, De Laet C et al (2007) The use of clinical risk factors enhances the performance of BMD in the prediction of hip and osteoporotic fractures in men and women. Osteoporos Int 18:1033–1046PubMedCrossRefGoogle Scholar
  15. 15.
    Kanis JA, Johnell O, De Laet C, Jonsson B, Oden A et al (2002) International variations in hip fracture probabilities: implications for risk assessment. J Bone Miner Res 17:1237–1244PubMedCrossRefGoogle Scholar
  16. 16.
    Ward KD, Klesges RC (2001) A meta-analysis of the effects of cigarette smoking on bone mineral density. Calcif Tissue Int 68:259–270PubMedCrossRefGoogle Scholar
  17. 17.
    Berg KM, Kunins HV, Jackson JL, Nahvi S, Chaudhry A et al (2008) Association between alcohol consumption and both osteoporotic fracture and bone density. Am J Med 121:406–418PubMedCrossRefGoogle Scholar
  18. 18.
    Hippisley-Cox J, Coupland C (2009) Predicting risk of osteoporotic fracture in men and women in England and Wales: prospective derivation and validation of QFractureScores. BMJ 339:b4229PubMedCrossRefGoogle Scholar
  19. 19.
    Johnell O, Kanis JA, Oden A, Johansson H, De Laet C et al (2005) Predictive value of BMD for hip and other fractures. J Bone Miner Res 20:1185–1194PubMedCrossRefGoogle Scholar
  20. 20.
    Cummings SR, Nevitt MC (1994) Non-skeletal determinants of fractures: the potential importance of the mechanics of falls. Study of Osteoporotic Fractures Research Group. Osteoporos Int 4:67–70PubMedCrossRefGoogle Scholar
  21. 21.
    Kanis JA, Johnell O, Oden A, Johansson H, McCloskey E (2008) FRAX and the assessment of fracture probability in men and women from the UK. Osteoporos Int 19:385–397PubMedCrossRefGoogle Scholar
  22. 22.
    Black DM, Arden NK, Palermo L, Pearson J, Cummings SR (1999) Prevalent vertebral deformities predict hip fractures and new vertebral deformities but not wrist fractures. J Bone Miner Res 14:821–828PubMedCrossRefGoogle Scholar
  23. 23.
    Compston J, Cooper A, Cooper C, Francis R, Kanis JA et al (2009) Guidelines for the diagnosis and management of osteoporosis in postmenopausal women and men from the age of 50 years in the UK. Maturitas 62:105–108PubMedCrossRefGoogle Scholar
  24. 24.
    Ensrud KE, Lui LY, Taylor BC, Schousboe JT, Donaldson MG et al (2009) A comparison of prediction models for fractures in older women: is more better? Arch Int Med 169:2087–2094CrossRefGoogle Scholar
  25. 25.
    Pluskiewicz W, Adamczyk P, Franek E, Leszczynski P, Sewerynek E et al (2010) 10-year probability of osteoporotic fracture in 2012 Polish women assessed by FRAX and nomogram by Nguyen et al.—conformity between methods and their clinical utility. Bone 46:1661–1667PubMedCrossRefGoogle Scholar
  26. 26.
    Kanis JA, Oden A, Johanson H, Borgstrom F, Strom O et al (2009) FRAX and its applications to clinical practice. Bone 44:734–743PubMedCrossRefGoogle Scholar
  27. 27.
    Siris ES, Simon JA, Barton IP, McClung MR, Grauer A (2008) Effects of risedronate on fracture risk in postmenopausal women with osteopenia. Osteoporos Int 19:681–686PubMedCrossRefGoogle Scholar
  28. 28.
    Rogers A, Glover SJ, Eastell R (2009) A randomised, double-blinded, placebo-controlled, trial to determine the individual response in bone turnover markers to lasofoxifene therapy. Bone 45:1044–1052PubMedCrossRefGoogle Scholar
  29. 29.
    Finkelstein JS, Wyland JJ, Lee H, Neer RM (2010) Effects of teriparatide, alendronate, or both in women with postmenopausal osteoporosis. J Clin Endocrinol Metab 95:1838–1845PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • N. M. Cummins
    • 1
  • E. K. Poku
    • 2
  • M. R. Towler
    • 3
  • O. M. O’Driscoll
    • 4
  • S. H. Ralston
    • 5
  1. 1.Clinical Materials Unit, Materials and Surface Science InstituteUniversity of LimerickLimerickIreland
  2. 2.Cranfield HealthCranfield UniversityCranfieldUK
  3. 3.Inamori School of EngineeringAlfred UniversityAlfredUSA
  4. 4.Medical Engineering Design and Innovation CentreCork Institute of TechnologyCorkIreland
  5. 5.School of Molecular and Clinical MedicineWestern General HospitalEdinburghUK

Personalised recommendations