Skip to main content

Advertisement

Log in

An Atypical Degenerative Osteoarthropathy in Hyp Mice is Characterized by a Loss in the Mineralized Zone of Articular Cartilage

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Patients with X-linked hypophosphatemia (XLH) develop enthesophytes and osteophytes secondary to articular cartilage degeneration and together are the primary cause of morbidity in adult patients so afflicted. We have previously characterized the enthesopathy in Hyp mice, a murine model of XLH. We now extend these studies to the synovial joint in order to characterize potential cellular changes in articular cartilage that may predispose patients to the osteoarthropathy of XLH. We report that, despite highly elevated levels of alkaline phosphatase activity throughout articular cartilage, there is a complete loss in the mineralized zone of articular cartilage as assessed by von Kossa staining of mineral and as quantified by EPIC-microCT analysis and evidence of vascular invasion. We also identify the downregulation of extracellular matrix (ECM) factors identified as regulators of terminally differentiated mineralizing articular chondrocytes. There is also a striking increase in the histochemical staining of sulfated proteoglycans, a change that may reflect the loss of a transitional tissue that reduces mechanical stress at the interface between cartilage and subchondral bone. The failure of mineralizing articular chondrocytes to develop in the hypophosphatemic state suggests that phosphate may be a key regulator of chondrocyte mineralization. Accordingly, we find that the appropriate zonal arrangement and phenotypic markers of articular cartilage are significantly reestablished by phosphate-replacement therapy. Given the turnover and maintenance of articular cartilage ECM, the identification of early and abnormal cellular changes unique to XLH will undoubtedly aid in a more effective management of this disease to minimize the onset of degenerative osteoarthropathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Carpenter TO (1997) New perspectives on the biology and treatment of X-linked hypophosphatemic rickets. Pediatr Clin North Am 44:443–466

    Article  PubMed  CAS  Google Scholar 

  2. Liang G, Katz LD, Insogna KL, Carpenter TO, Macica CM (2009) Survey of the enthesopathy of X-linked hypophosphatemia and its characterization in Hyp mice. Calcif Tissue Int 85:235–246

    Article  PubMed  CAS  Google Scholar 

  3. Liu S, Vierthaler L, Tang W, Zhou J, Quarles LD (2008) FGFR3 and FGFR4 do not mediate renal effects of FGF23. J Am Soc Nephrol 19:2342–2350

    Article  PubMed  CAS  Google Scholar 

  4. Saito H, Kusano K, Kinosaki M, Ito H, Hirata M, Segawa H, Miyamoto K, Fukushima N (2003) Human fibroblast growth factor-23 mutants suppress Na+-dependent phosphate co-transport activity and 1alpha, 25-dihydroxyvitamin D3 production. J Biol Chem 278:2206–2211

    Article  PubMed  CAS  Google Scholar 

  5. Urakawa I, Yamazaki Y, Shimada T, Iijima K, Hasegawa H, Okawa K, Fujita T, Fukumoto S, Yamashita T (2006) Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature 444:770–774

    Article  PubMed  CAS  Google Scholar 

  6. Hardy DC, Murphy WA, Siegel BA, Reid IR, Whyte MP (1989) X-linked hypophosphatemia in adults: prevalence of skeletal radiographic and scintigraphic features. Radiology 171:403–414

    PubMed  CAS  Google Scholar 

  7. Jacobson JA, Kalume-Brigido M (2006) Case 97: X-linked hypophosphatemic osteomalacia with insufficiency fracture. Radiology 240:607–610

    Article  PubMed  Google Scholar 

  8. Polisson RP, Martinez S, Khoury M, Harrell RM, Lyles KW, Friedman N, Harrelson JM, Reisner E, Drezner MK (1985) Calcification of entheses associated with X-linked hypophosphatemic osteomalacia. N Engl J Med 313:1–6

    Article  PubMed  CAS  Google Scholar 

  9. Ramonda R, Sfriso P, Podswiadek M, Oliviero F, Valvason C, Punzi L (2005) The enthesopathy of vitamin D-resistant osteomalacia in adults [in Italian]. Reumatismo 57:52–56

    PubMed  CAS  Google Scholar 

  10. Van de Wiele C, Dierckx RA, Weynants L, Simons M, Kaufman JM (1996) Whole-body bone scan findings in X-linked hypophosphatemia. Clin Nucl Med 21:483

    Article  PubMed  Google Scholar 

  11. Yost JH, Spencer-Green G, Brown LA (1994) Radiologic vignette. X-linked hypophosphatemia (familial vitamin D-resistant rickets). Arthritis Rheum 37:435–438

    Article  PubMed  CAS  Google Scholar 

  12. Reid IR, Hardy DC, Murphy WA, Teitelbaum SL, Bergfeld MA, Whyte MP (1989) X-linked hypophosphatemia: a clinical, biochemical, and histopathologic assessment of morbidity in adults. Medicine 68:336–352

    Article  PubMed  CAS  Google Scholar 

  13. Carpenter TO, Keller M, Schwartz D, Mitnick M, Smith C, Ellison A, Carey D, Comite F, Horst R, Travers R, Glorieux FH, Gundberg CM, Poole AR, Insogna KL (1996) 24,25 Dihydroxyvitamin D supplementation corrects hyperparathyroidism and improves skeletal abnormalities in X-linked hypophosphatemic rickets—a clinical research center study. J Clin Endocrinol Metab 81:2381–2388

    Article  PubMed  CAS  Google Scholar 

  14. Masel JP, Cartwright DW, Latham SC (1981) Hypophosphataemic vitamin D-resistant rickets—a cause of spinal stenosis in adults. Australas Radiol 25:264–271

    Article  PubMed  CAS  Google Scholar 

  15. van der Kraan PM, van den Berg WB (2007) Osteophytes: relevance and biology. Osteoarthritis Cartilage 15:237–244

    Article  PubMed  Google Scholar 

  16. Rogers J, Shepstone L, Dieppe P (2004) Is osteoarthritis a systemic disorder of bone? Arthritis Rheum 50:452–457

    Article  PubMed  Google Scholar 

  17. Eicher EM, Southard JL, Scriver CR, Glorieux FH (1976) Hypophosphatemia: mouse model for human familial hypophosphatemic (vitamin D-resistant) rickets. Proc Natl Acad Sci USA 73:4667–4671

    Article  PubMed  CAS  Google Scholar 

  18. Liu S, Guo R, Simpson LG, Xiao ZS, Burnham CE, Quarles LD (2003) Regulation of fibroblastic growth factor 23 expression but not degradation by PHEX. J Biol Chem 278:37419–37426

    Article  PubMed  CAS  Google Scholar 

  19. Tenenhouse HS (1999) X-linked hypophosphataemia: a homologous disorder in humans and mice. Nephrol Dial Transplant 14:333–341

    Article  PubMed  CAS  Google Scholar 

  20. Xie L, Lin AS, Levenston ME, Guldberg RE (2009) Quantitative assessment of articular cartilage morphology via EPIC-microCT. Osteoarthritis Cartilage 17:313–320

    Article  PubMed  CAS  Google Scholar 

  21. Chen X, Macica C, Nasiri A, Judex S, Broadus AE (2007) Mechanical regulation of PTHrP expression in entheses. Bone 41:752–759

    Article  PubMed  CAS  Google Scholar 

  22. Rees JA, Ali SY (1988) Ultrastructural localisation of alkaline phosphatase activity in osteoarthritic human articular cartilage. Ann Rheum Dis 47:747–753

    Article  PubMed  CAS  Google Scholar 

  23. Revell PA, Pirie C, Amir G, Rashad S, Walker F (1990) Metabolic activity in the calcified zone of cartilage: observations on tetracycline labelled articular cartilage in human osteoarthritic hips. Rheumatol Int 10:143–147

    Article  PubMed  CAS  Google Scholar 

  24. Oegema TR Jr, Carpenter RJ, Hofmeister F, Thompson RC Jr (1997) The interaction of the zone of calcified cartilage and subchondral bone in osteoarthritis. Microsc Res Tech 37:324–332

    Article  PubMed  Google Scholar 

  25. McKee MD, Nanci A, Landis WJ, Gotoh Y, Gerstenfeld LC, Glimcher MJ (1990) Developmental appearance and ultrastructural immunolocalization of a major 66 kDa phosphoprotein in embryonic and post-natal chicken bone. Anat Rec 228:77–92

    Article  PubMed  CAS  Google Scholar 

  26. Ohkubo K, Shimokawa H, Ogawa T, Suzuki S, Fukada K, Ohya K, Ohyama K (2003) Immunohistochemical localization of matrix metalloproteinase 13 (MMP-13) in mouse mandibular condylar cartilage. J Med Dent Sci 50:203–211

    PubMed  Google Scholar 

  27. Sommer B, Bickel M, Hofstetter W, Wetterwald A (1996) Expression of matrix proteins during the development of mineralized tissues. Bone 19:371–380

    Article  PubMed  CAS  Google Scholar 

  28. Wu CW, Tchetina EV, Mwale F, Hasty K, Pidoux I, Reiner A, Chen J, Van Wart HE, Poole AR (2002) Proteolysis involving matrix metalloproteinase 13 (collagenase-3) is required for chondrocyte differentiation that is associated with matrix mineralization. J Bone Miner Res 17:639–651

    Article  PubMed  CAS  Google Scholar 

  29. Inada M, Wang Y, Byrne MH, Rahman MU, Miyaura C, Lopez-Otin C, Krane SM (2004) Critical roles for collagenase-3 (Mmp13) in development of growth plate cartilage and in endochondral ossification. Proc Natl Acad Sci USA 101:17192–17197

    Article  PubMed  CAS  Google Scholar 

  30. Hunter GK, Kyle CL, Goldberg HA (1994) Modulation of crystal formation by bone phosphoproteins: structural specificity of the osteopontin-mediated inhibition of hydroxyapatite formation. Biochem J 300(Pt 3):723–728

    PubMed  CAS  Google Scholar 

  31. Lian JB, McKee MD, Todd AM, Gerstenfeld LC (1993) Induction of bone-related proteins, osteocalcin and osteopontin, and their matrix ultrastructural localization with development of chondrocyte hypertrophy in vitro. J Cell Biochem 52:206–219

    Article  PubMed  CAS  Google Scholar 

  32. Stickens D, Behonick DJ, Ortega N, Heyer B, Hartenstein B, Yu Y, Fosang AJ, Schorpp-Kistner M, Angel P, Werb Z (2004) Altered endochondral bone development in matrix metalloproteinase 13-deficient mice. Development 131:5883–5895

    Article  PubMed  CAS  Google Scholar 

  33. Glorieux FH, Marie PJ, Pettifor JM, Delvin EE (1980) Bone response to phosphate salts, ergocalciferol, and calcitriol in hypophosphatemic vitamin D-resistant rickets. N Engl J Med 303:1023–1031

    Article  PubMed  CAS  Google Scholar 

  34. Murshed M, Harmey D, Millan JL, McKee MD, Karsenty G (2005) Unique coexpression in osteoblasts of broadly expressed genes accounts for the spatial restriction of ECM mineralization to bone. Genes Dev 19:1093–1104

    Article  PubMed  CAS  Google Scholar 

  35. Hashimoto S, Creighton-Achermann L, Takahashi K, Amiel D, Coutts RD, Lotz M (2002) Development and regulation of osteophyte formation during experimental osteoarthritis. Osteoarthritis Cartilage 10:180–187

    Article  PubMed  CAS  Google Scholar 

  36. Smith JO, Oreffo RO, Clarke NM, Roach HI (2003) Changes in the antiangiogenic properties of articular cartilage in osteoarthritis. J Orthop Sci 8:849–857

    Article  PubMed  Google Scholar 

  37. Lohmander S (1988) Proteoglycans of joint cartilage. Structure, function, turnover and role as markers of joint disease. Baillieres Clin Rheumatol 2:37–62

    Article  PubMed  CAS  Google Scholar 

  38. Mitchell PG, Magna HA, Reeves LM, Lopresti-Morrow LL, Yocum SA, Rosner PJ, Geoghegan KF, Hambor JE (1996) Cloning, expression, and type II collagenolytic activity of matrix metalloproteinase-13 from human osteoarthritic cartilage. J Clin Invest 97:761–768

    Article  PubMed  CAS  Google Scholar 

  39. Valverde-Franco G, Binette JS, Li W, Wang H, Chai S, Laflamme F, Tran-Khanh N, Quenneville E, Meijers T, Poole AR, Mort JS, Buschmann MD, Henderson JE (2006) Defects in articular cartilage metabolism and early arthritis in fibroblast growth factor receptor 3 deficient mice. Hum Mol Genet 15:1783–1792

    Article  PubMed  CAS  Google Scholar 

  40. Wernicke D, Seyfert C, Hinzmann B, Gromnica-Ihle E (1996) Cloning of collagenase 3 from the synovial membrane and its expression in rheumatoid arthritis and osteoarthritis. J Rheumatol 23:590–595

    PubMed  CAS  Google Scholar 

  41. Fantner GE, Adams J, Turner P, Thurner PJ, Fisher LW, Hansma PK (2007) Nanoscale ion mediated networks in bone: osteopontin can repeatedly dissipate large amounts of energy. Nano Lett 7:2491–2498

    Article  PubMed  CAS  Google Scholar 

  42. McKee MD, Nanci A (1996) Osteopontin at mineralized tissue interfaces in bone, teeth, and osseointegrated implants: ultrastructural distribution and implications for mineralized tissue formation, turnover, and repair. Microsc Res Tech 33:141–164

    Article  PubMed  CAS  Google Scholar 

  43. Mente PL, Lewis JL (1994) Elastic modulus of calcified cartilage is an order of magnitude less than that of subchondral bone. J Orthop Res 12:637–647

    Article  PubMed  CAS  Google Scholar 

  44. Lu XL, Miller C, Chen FH, Guo XE, Mow VC (2007) The generalized triphasic correspondence principle for simultaneous determination of the mechanical properties and proteoglycan content of articular cartilage by indentation. J Biomech 40:2434–2441

    Article  PubMed  Google Scholar 

  45. Lu XL, Mow VC, Guo XE (2009) Proteoglycans and mechanical behavior of condylar cartilage. J Dent Res 88:244–248

    Article  PubMed  CAS  Google Scholar 

  46. Lu XL, Sun DD, Guo XE, Chen FH, Lai WM, Mow VC (2004) Indentation determined mechanoelectrochemical properties and fixed charge density of articular cartilage. Ann Biomed Eng 32:370–379

    Article  PubMed  Google Scholar 

  47. Jin M, Frank EH, Quinn TM, Hunziker EB, Grodzinsky AJ (2001) Tissue shear deformation stimulates proteoglycan and protein biosynthesis in bovine cartilage explants. Arch Biochem Biophys 395:41–48

    Article  PubMed  CAS  Google Scholar 

  48. Marie PJ, Travers R, Glorieux FH (1981) Healing of rickets with phosphate supplementation in the hypophosphatemic male mouse. J Clin Invest 67:911–914

    Article  PubMed  CAS  Google Scholar 

  49. Sabbagh Y, Carpenter TO, Demay MB (2005) Hypophosphatemia leads to rickets by impairing caspase-mediated apoptosis of hypertrophic chondrocytes. Proc Natl Acad Sci USA 102:9637–9642

    Article  PubMed  CAS  Google Scholar 

  50. Adams CS, Horton WE Jr (1998) Chondrocyte apoptosis increases with age in the articular cartilage of adult animals. Anat Rec 250:418–425

    Article  PubMed  CAS  Google Scholar 

  51. Blanco FJ, Guitian R, Vazquez-Martul E, de Toro FJ, Galdo F (1998) Osteoarthritis chondrocytes die by apoptosis. A possible pathway for osteoarthritis pathology. Arthritis Rheum 41:284–289

    Article  PubMed  CAS  Google Scholar 

  52. Hashimoto S, Ochs RL, Komiya S, Lotz M (1998) Linkage of chondrocyte apoptosis and cartilage degradation in human osteoarthritis. Arthritis Rheum 41:1632–1638

    Article  PubMed  CAS  Google Scholar 

  53. Heraud F, Heraud A, Harmand MF (2000) Apoptosis in normal and osteoarthritic human articular cartilage. Ann Rheum Dis 59:959–965

    Article  PubMed  CAS  Google Scholar 

  54. Chen X, Macica CM, Nasiri A, Broadus AE (2008) Regulation of articular chondrocyte proliferation and differentiation by Indian hedgehog and parathyroid hormone-related protein in mice. Arthritis Rheum 58:3788–3797

    Article  PubMed  Google Scholar 

  55. Addison WN, Azari F, Sorensen ES, Kaartinen MT, McKee MD (2007) Pyrophosphate inhibits mineralization of osteoblast cultures by binding to mineral, up-regulating osteopontin, and inhibiting alkaline phosphatase activity. J Biol Chem 282:15872–15883

    Article  PubMed  CAS  Google Scholar 

  56. Beck GR Jr (2003) Inorganic phosphate as a signaling molecule in osteoblast differentiation. J Cell Biochem 90:234–243

    Article  PubMed  CAS  Google Scholar 

  57. Beck GR Jr, Zerler B, Moran E (2000) Phosphate is a specific signal for induction of osteopontin gene expression. Proc Natl Acad Sci USA 97:8352–8357

    Article  PubMed  CAS  Google Scholar 

  58. Johnson JA, Grande JP, Roche PC, Kumar R (1996) Ontogeny of the 1,25-dihydroxyvitamin D3 receptor in fetal rat bone. J Bone Miner Res 11:56–61

    Article  PubMed  CAS  Google Scholar 

  59. Tetlow LC, Woolley DE (2001) Expression of vitamin D receptors and matrix metalloproteinases in osteoarthritic cartilage and human articular chondrocytes in vitro. Osteoarthritis Cartilage 9:423–431

    Article  PubMed  CAS  Google Scholar 

  60. Carpenter TO, Imel EA, Holm IA, Jan de Beur SM, Insogna KL (2011) A clinician’s guide to X-linked hypophosphatemia. J Bone Miner Res. doi:10.1002/jbmr.340

  61. Lippiello L, Hall D, Mankin HJ (1977) Collagen synthesis in normal and osteoarthritic human cartilage. J Clin Invest 59:593–600

    Article  PubMed  CAS  Google Scholar 

  62. Treadwell BV, Mankin HJ (1986) The synthetic processes of articular cartilage. Clin Orthop Relat Res 213:50–61

    PubMed  CAS  Google Scholar 

  63. Kolek OI, Hines ER, Jones MD, LeSueur LK, Lipko MA, Kiela PR, Collins JF, Haussler MR, Ghishan FK (2005) 1α,25-Dihydroxyvitamin D3 upregulates FGF23 gene expression in bone: the final link in a renal-gastrointestinal-skeletal axis that controls phosphate transport. Am J Physiol Gastrointest Physiol 289:G1036–G1042

    Article  CAS  Google Scholar 

  64. Perwad F, Azam N, Zhang MYH, Yamashita T, Tenenhouse HS, Portale AA (2005) Dietary and serum phosphorus regulate fibroblast growth factor 23 expression and 1,25-dihydroxyvitamin D metabolism in mice. Endocrinology 146:5358–5364

    Article  PubMed  CAS  Google Scholar 

  65. Aono Y, Yamazaki Y, Yasutake J, Kawata T, Hasegawa H, Urakawa I, Fujita T, Wada M, Yamashita T, Fukumoto S, Shimada T (2009) Therapeutic effects of anti-FGF23 antibodies in hypophosphatemic rickets/osteomalacia. J Bone Miner Res 24:1879–1888

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Drs. Thomas Carpenter, Arthur Broadus, and Pete Amos for helpful discussion. We also thank Ali Nasiri, Nancy Troiano, and Christiane Coady for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolyn M. Macica.

Additional information

The authors have stated that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

223_2011_9502_MOESM1_ESM.tif

Supplementary material 1: Schematic of EPIC-microCT strategy (shown is a 12 wk old wildtype mouse) showing the discrimination of specific regions of interest to segregate unmineralized and mineralized cartilage and underlying subchondral bone; arrow showing cement line (the interface between calcified articular cartilage and subchondral bone). See Materials and Methods for experimental detail (TIFF 2184 kb)

223_2011_9502_MOESM2_ESM.tif

Supplementary material 2: Localization of alkaline phosphatase and markers of mineralizing growth plate chondrocytes of representative 12 wk old control, Hyp and Hyp mice treated with oral phosphate and calcitriol. (A), Tibia of 12 wk old control mouse; shown at low power; (B-E), Control mouse, alkaline phosphatase activity localized to hypertrophic growth plate [GP] chondrocytes (B); Immunoreactive OPN secreted into the matrix of hypertrophic GP chondrocytes (C); Immunoreactive MMP13 secreted into the matrix of GP chondrocytes (D); Histochemical staining of sulfated proteoglycans by safranin O/fast green staining (E). (F), Tibia of 12 wk old Hyp mouse; shown at low power, note widened growth plate (rickets), metaphyseal splaying and high levels of tissue alkaline phosphatase levels; (G-J), alkaline phosphatase activity localized to hypertrophic GP chondrocytes (G); Absence of immunoreactive OPN secreted into the matrix of expanded hypertrophic GP chondrocytes (H); Absence of immunoreactive MMP13 secreted into the matrix of GP chondrocytes (I); Histochemical staining of sulfated proteoglycans by safranin O/fast green staining, note significant induction of proteoglycan synthesis (J); (K), Tibia of 12 wk old Hyp mouse treated with oral phosphate and calcitriol; shown at low power, note loss of rachitic lesions; (L-O), alkaline phosphatase activity localized to hypertrophic GP chondrocytes (L); Recovery of immunoreactive OPN secreted into the matrix of hypertrophic GP chondrocytes (M); Recovery of immunoreactive MMP13 secreted into the matrix of GP chondrocytes (N); Histochemical staining of sulfated proteoglycans by safranin O/fast green staining (O) showing significant downregulation of proteoglycans (TIFF 26078 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, G., VanHouten, J. & Macica, C.M. An Atypical Degenerative Osteoarthropathy in Hyp Mice is Characterized by a Loss in the Mineralized Zone of Articular Cartilage. Calcif Tissue Int 89, 151–162 (2011). https://doi.org/10.1007/s00223-011-9502-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-011-9502-4

Keywords

Navigation