Skip to main content

Advertisement

Log in

Sex Differences in Chondrocyte Maturation in the Mandibular Condyle from a Decreased Occlusal Loading Model

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Temporomandibular joint disorders (TMDs) predominantly afflict women of childbearing age. Defects in mechanical loading-induced temporomandibular joint (TMJ) remodeling are believed to be a major etiological factor in the development of TMD. The goal of this study was to determine if there are sex differences in CD-1 and C57BL/6 mice exposed to a decreased occlusal loading TMJ remodeling model. Male and female CD-1 and C57BL/6 mice, 21 days old, were each divided into two groups. They were fed either a normal pellet diet (normal loading) or a soft diet and had their incisors trimmed out of occlusion (decreased occlusal loading) for 4 weeks. The mandibular condylar cartilage was evaluated by histology, and the subchondral bone was evaluated by micro-CT analysis. Gene expression from both was evaluated by real-time PCR analysis. In both strains and sexes of mice, decreased occlusal loading caused similar effects in the subchondral bone, decreases in bone volume and total volume compared with their normal loading controls. However, in both strains, decreased occlusal loading caused a significant decrease in the expression of collagen type II (Col2) and Sox9 only in female mice, but not in male mice, compared with their normal loading controls. Decreased occlusal loading causes decreased bone volume in both sexes and a decrease in early chondrocyte maturation exclusively in female mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. LeResche L (1997) Epidemiology of temporomandibular disorders: implications for the investigation of etiologic factors. Crit Rev Oral Biol Med 8:291–305

    Article  PubMed  CAS  Google Scholar 

  2. Tanaka E, Detamore MS, Mercuri LG (2008) Degenerative disorders of the temporomandibular joint: etiology, diagnosis, and treatment. J Dent Res 87:296–307

    Article  PubMed  CAS  Google Scholar 

  3. Lipton JA, Ship JA, Larach-Robinson D (1993) Estimated prevalence and distribution of reported orofacial pain in the United States. J Am Dent Assoc 124:115–121

    PubMed  CAS  Google Scholar 

  4. Von Korff M, Dworkin SF, Le Resche L, Kruger A (1988) An epidemiologic comparison of pain complaints. Pain 32:173–183

    Article  Google Scholar 

  5. Warren MP, Fried JL (2001) Temporomandibular disorders and hormones in women. Cells Tissues Organs 169:187–192

    Article  PubMed  CAS  Google Scholar 

  6. Abubaker AO, Raslan WF, Sotereanos GC (1993) Estrogen and progesterone receptors in temporomandibular joint discs of symptomatic and asymptomatic persons: a preliminary study. J Oral Maxillofac Surg 51:1096–1100

    Article  PubMed  CAS  Google Scholar 

  7. Milam SB, Aufdemorte TB, Sheridan PJ, Triplett RG, Van Sickels JE, Holt GR (1987) Sexual dimorphism in the distribution of estrogen receptors in the temporomandibular joint complex of the baboon. Oral Surg Oral Med Oral Pathol 64:527–532

    Article  PubMed  CAS  Google Scholar 

  8. Aufdemorte TB, Van Sickels JE, Dolwick MF, Sheridan PJ, Holt GR, Aragon SB, Gates GA (1986) Estrogen receptors in the temporomandibular joint of the baboon (Papio cynocephalus): an autoradiographic study. Oral Surg Oral Med Oral Pathol 61:307–314

    Article  PubMed  CAS  Google Scholar 

  9. Wang W, Hayami T, Kapila S (2009) Female hormone receptors are differentially expressed in mouse fibrocartilages. Osteoarthritis Cartilage. 17:646–654

    Article  PubMed  Google Scholar 

  10. LeResche L, Saunders K, Von Korff MR, Barlow W, Dworkin SF (1997) Use of exogenous hormones and risk of temporomandibular disorder pain. Pain 69:153–160

    Article  PubMed  CAS  Google Scholar 

  11. Meisler JG (1999) Chronic pain conditions in women. J Womens Health 8:313–320

    Article  PubMed  CAS  Google Scholar 

  12. Shen G, Darendeliler MA (2005) The adaptive remodeling of condylar cartilage—a transition from chondrogenesis to osteogenesis. J Dent Res 84:691–699

    Article  PubMed  CAS  Google Scholar 

  13. Milam SB (2005) Pathogenesis of degenerative temporomandibular joint arthritides. Odontology 93:7–15

    Article  PubMed  CAS  Google Scholar 

  14. Wadhwa S, Kapila S (2008) TMJ disorders: future innovations in diagnostics and therapeutics. J Dent Educ 72:930–947

    PubMed  Google Scholar 

  15. Sasaguri K, Jiang H, Chen J (1998) The effect of altered functional forces on the expression of bone-matrix proteins in developing mouse mandibular condyle. Arch Oral Biol 43:83–92

    Article  PubMed  CAS  Google Scholar 

  16. Chen J, Sorensen KP, Gupta T, Kilts T, Young M, Wadhwa S (2009) Altered functional loading causes differential effects in the subchondral bone and condylar cartilage in the temporomandibular joint from young mice. Osteoarthritis Cartilage 17:354–361

    Article  PubMed  CAS  Google Scholar 

  17. Hinton RJ, Carlson DS (1986) Response of the mandibular joint to loss of incisal function in the rat. Acta Anat (Basel) 125:145–151

    Article  CAS  Google Scholar 

  18. Hinton RJ (1988) Effect of altered masticatory function on [3H]-thymidine and [35S]-sulfate incorporation in the condylar cartilage of the rat. Acta Anat (Basel) 131:136–139

    Article  CAS  Google Scholar 

  19. Meikle MC (2007) Remodeling the dentofacial skeleton: the biological basis of orthodontics and dentofacial orthopedics. J Dent Res 86:12–24

    Article  PubMed  CAS  Google Scholar 

  20. Meikle MC (1973) In vivo transplantation of the mandibular joint of the rat; an autoradiographic investigation into cellular changes at the condyle. Arch Oral Biol 18:1011–1020

    Article  Google Scholar 

  21. Vanderschueren D, Venken K, Ophoff J, Bouillon R, Boonen S (2006) Sex steroids and the periosteum—reconsidering the roles of androgens and estrogens in periosteal expansion. J Clin Endocrinol Metab 91:378–382

    Article  PubMed  CAS  Google Scholar 

  22. Shibata S, Suzuki S, Tengan T, Yamashita Y (1995) A histochemical study of apoptosis in the reduced ameloblasts of erupting mouse molars. Arch Oral Biol 40:677–680

    Article  PubMed  CAS  Google Scholar 

  23. Ness AR (1965) Eruption rates of impeded and unimpeded mandibular incisors of the adult laboratory mouse. Arch Oral Biol 10:439–451

    Article  PubMed  CAS  Google Scholar 

  24. Jiang X, Kalajzic Z, Maye P, Braut A, Bellizzi J, Mina M, Rowe DW (2005) Histological analysis of GFP expression in murine bone. J Histochem Cytochem 53:593–602

    Article  PubMed  CAS  Google Scholar 

  25. Kiraly K, Lammi M, Arokoski J, Lapvetelainen T, Tammi M, Helminen H, Kiviranta I (1996) Safranin O reduces loss of glycosaminoglycans from bovine articular cartilage during histological specimen preparation. Histochem J 28:99–107

    Article  PubMed  CAS  Google Scholar 

  26. Talwar RM, Wong BS, Svoboda K, Harper RP (2006) Effects of estrogen on chondrocyte proliferation and collagen synthesis in skeletally mature articular cartilage. J Oral Maxillofac Surg 64:600–609

    Article  PubMed  Google Scholar 

  27. Fujita T, Kawata T, Tokimasa C, Kohno S, Kaku M, Tanne K (2001) Breadth of the mandibular condyle affected by disturbances of the sex hormones in ovariectomized and orchiectomized mice. Clin Orthod Res 4:172–176

    Article  PubMed  Google Scholar 

  28. Okuda T, Yasuoka T, Nakashima M, Oka N (1996) The effect of ovariectomy on the temporomandibular joints of growing rats. J Oral Maxillofac Surg 54:1201–1210

    Article  PubMed  CAS  Google Scholar 

  29. Yasuoka T, Nakashima M, Okuda T, Tatematsu N (2000) Effect of estrogen replacement on temporomandibular joint remodeling in ovariectomized rats. J Oral Maxillofac Surg 58:189–196

    Article  PubMed  CAS  Google Scholar 

  30. Fujita T, Ohtani J, Shigekawa M, Kawata T, Kaku M, Kohno S, Motokawa M, Tohma Y, Tanne K (2006) Influence of sex hormone disturbances on the internal structure of the mandible in newborn mice. Eur J Orthod 28:190–194

    Article  PubMed  CAS  Google Scholar 

  31. Luder HU, Leblond CP, von der Mark K (1988) Cellular stages in cartilage formation as revealed by morphometry, radioautography and type II collagen immunostaining of the mandibular condyle from weanling rats. Am J Anat 182:197–214

    Article  PubMed  CAS  Google Scholar 

  32. Gao Q, Xu M, Alander CB, Choudhary S, Pilbeam CC, Raisz LG (2009) Effects of prostaglandin E2 on bone in mice in vivo. Prostaglandins Other Lipid Mediat 89:20–25

    Article  PubMed  CAS  Google Scholar 

  33. Turner RT, Vandersteenhoven JJ, Bell NH (1987) The effects of ovariectomy and 17beta-estradiol on cortical bone histomorphometry in growing rats. J Bone Miner Res 2:115–122

    Article  PubMed  CAS  Google Scholar 

  34. Ahlborg HG, Johnell O, Turner CH, Rannevik G, Karlsson MK (2003) Bone loss and bone size after menopause. N Engl J Med 349:327–334

    Article  PubMed  Google Scholar 

  35. Turner RT, Colvard DS, Spelsberg TC (1990) Estrogen inhibition of periosteal bone formation in rat long bones: down-regulation of gene expression for bone matrix proteins. Endocrinology 127:1346–1351

    Article  PubMed  CAS  Google Scholar 

  36. Saxon LK, Turner CH (2006) Low-dose estrogen treatment suppresses periosteal bone formation in response to mechanical loading. Bone 39:1261–1267

    Article  PubMed  CAS  Google Scholar 

  37. Kannus P, Haapasalo H, Sankelo M, Sievanen H, Pasanen M, Heinonen A, Oja P, Vuori I (1995) Effect of starting age of physical activity on bone mass in the dominant arm of tennis and squash players. Ann Intern Med 123:27–31

    PubMed  CAS  Google Scholar 

  38. Kontulainen S, Sievanen H, Kannus P, Pasanen M, Vuori I (2003) Effect of long-term impact-loading on mass, size, and estimated strength of humerus and radius of female racquet-sports players: a peripheral quantitative computed tomography study between young and old starters and controls. J Bone Miner Res 18:352–359

    Article  PubMed  Google Scholar 

  39. Bass SL, Saxon L, Daly RM, Turner CH, Robling AG, Seeman E, Stuckey S (2002) The effect of mechanical loading on the size and shape of bone in pre-, peri-, and postpubertal girls: a study in tennis players. J Bone Miner Res 17:2274–2280

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by 5K22DE017193 (S. W.) and 1R01DE020097 (S. W.) from the National Institute of Dental and Craniofacial Research, National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Sobue.

Additional information

The authors have stated that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, J., Sobue, T., Utreja, A. et al. Sex Differences in Chondrocyte Maturation in the Mandibular Condyle from a Decreased Occlusal Loading Model. Calcif Tissue Int 89, 123–129 (2011). https://doi.org/10.1007/s00223-011-9498-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-011-9498-9

Keywords

Navigation