Skip to main content

Advertisement

Log in

Effects of Risedronate in Runx2 Overexpressing Mice, an Animal Model for Evaluation of Treatment Effects on Bone Quality and Fractures

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Young mice overexpressing Runx2 specifically in cells of the osteoblastic lineage failed to gain bone mass and exhibited a dramatic increase in bone resorption, leading to severe osteopenia and spontaneous vertebral fractures. The objective of the current study was to determine whether treatment with a bisphosphonate (risedronate, Ris), which reduces fractures in postmenopausal as well as in juvenile osteoporosis, was able to improve bone quality and reduce vertebral fractures in mice overexpressing Runx2. Four-week-old female Runx2 mice received Ris at 2 and 10 μg/kg subcutaneously twice a week for 12 weeks. Runx2 and wild-type mice received vehicle (Veh) as control. We measured the number of new fractures by X-ray and bone mineral density (BMD) by DEXA. We evaluated bone quality by histomorphometry, micro-CT, and Fourier transform infrared imaging (FTIRI). Ris at 20 μg/kg weekly significantly reduced the average number of new vertebral fractures compared to controls. This was accompanied by significantly increased BMD, increased trabecular bone volume, and reduced bone remodeling (seen in indices of bone resorption and formation) in the vertebrae and femoral metaphysis compared to Runx2 Veh. At the femur, Ris also increased cortical thickness. Changes in collagen cross-linking seen on FTIRI confirmed that Runx2 mice have accelerated bone turnover and showed that Ris affects the collagen cross-link ratio at both forming and resorbing sites. In conclusion, young mice overexpressing Runx2 have high bone turnover-induced osteopenia and spontaneous fractures. Ris at 20 μg/kg weekly induced an increase in bone mass, changes in bone microarchitecture, and decreased vertebral fractures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Liberman UA, Weiss SR, Bröll J, Minne HW, Quan H, Bell NH, Rodriguez-Portales J, Downs RW Jr, Dequeker J, Favus M (1995) Effect of oral alendronate on bone mineral density and the incidence of fractures in postmenopausal osteoporosis. The Alendronate Phase III Osteoporosis Treatment Study Group. N Engl J Med 333:1437–1443

    Article  PubMed  CAS  Google Scholar 

  2. Harris ST, Watts NB, Genant HK, McKeever CD, Hangartner T, Keller M, Chesnut CH III, Brown J, Eriksen EF, Hoseyni MS, Axelrod DW, Miller PD (1999) Effects of risedronate treatment on vertebral and nonvertebral fractures in women with postmenopausal osteoporosis. Vertebral Efficacy with Risedronate Therapy (VERT) Study Group. JAMA 282:1344–1352

    Article  PubMed  CAS  Google Scholar 

  3. Ettinger B, Black DM, Mitlak BH, Knickerbocker RK, Nickelsen T, Genant HK, Christiansen C, Delmas PD, Zanchetta JR, Stakkestad J, Glüer CC, Krueger K, Cohen FJ, Eckert S, Ensrud KE, Avioli LV, Lips P, Cummings SR (1999) Reduction of vertebral fracture risk in postmenopausal women with osteoporosis treated with raloxifene: results from a 3-year randomized clinical trial. Multiple Outcomes of Raloxifene Evaluation (MORE) Investigators. JAMA 282:637–645

    Article  PubMed  CAS  Google Scholar 

  4. Black DM, Delmas PD, Eastell R, Reid IR, Boonen S, Cauley JA, Cosman F, Lakatos P, Leung PC, Man Z, Mautalen C, Mesenbrink P, Hu H, Caminis J, Tong K, Rosario-Jansen T, Krasnow J, Hue TF, Sellmeyer D, Eriksen EF, Cummings SR, HORIZON Pivotal Fracture Trial (2007) Once-yearly zoledronic acid for treatment of postmenopausal osteoporosis. N Engl J Med 356:1809–1822

    Article  PubMed  CAS  Google Scholar 

  5. Cummings SR, Karpf DB, Harris F, Genant HK, Ensrud K, LaCroix AZ, Black DM (2002) Improvement in spine bone density and reduction in risk of vertebral fractures during treatment with antiresorptive drugs. Am J Med 112:281–289

    Article  PubMed  CAS  Google Scholar 

  6. Delmas PD, Li Z, Cooper C (2004) Relationship between changes in bone mineral density and fracture risk reduction with antiresorptive drugs: some issues with meta-analyses. J Bone Miner Res 19:330–337

    Article  PubMed  CAS  Google Scholar 

  7. Watts NB, Geusens P, Barton IP, Felsenberg D (2005) Relationship between changes in BMD and nonvertebral fracture incidence associated with risedronate: reduction in risk of nonvertebral fracture is not related to change in BMD. J Bone Miner Res 20:2097–2104

    Article  PubMed  Google Scholar 

  8. Bouxsein ML (2003) Bone quality: where do we go from here? Osteoporos Int 14(Suppl 5):118–127

    Article  Google Scholar 

  9. Felsenberg D, Boonen S (2005) The bone quality framework: determinants of bone strength and their interrelationships, and implications for osteoporosis management. Clin Ther 27:1–11

    Article  PubMed  Google Scholar 

  10. Chavassieux P, Seeman E, Delmas PD (2007) Insights into material and structural basis of bone fragility from diseases associated with fractures: how determinants of the biomechanical properties of bone are compromised by disease. Endocr Rev 28:151–164

    Article  PubMed  CAS  Google Scholar 

  11. Mosekilde L (1995) Assessing bone quality—animal models in preclinical osteoporosis research. Bone 17(Suppl 4):343S–352S

    PubMed  CAS  Google Scholar 

  12. Reinwald S, Burr D (2008) Review of nonprimate, large animal models for osteoporosis research. J Bone Miner Res 23:1353–1368

    Article  PubMed  Google Scholar 

  13. Brouwers JE, Ruchelsman M, Rietbergen BV, Bouxsein ML (2008) Determination of rat vertebral bone compressive fatigue properties in untreated intact rats and zoledronic-acid-treated, ovariectomized rats. Osteoporos Int 20(8):1377–1384

    Article  PubMed  Google Scholar 

  14. Brennan TC, Rizzoli R, Ammann P (2009) Selective modification of bone quality by PTH, pamidronate, or raloxifene. J Bone Miner Res 24:800–808

    Article  PubMed  CAS  Google Scholar 

  15. Bachrach LK, Ward LM (2009) Clinical review 1: Bisphosphonate use in childhood osteoporosis. J Clin Endocrinol Metab 94(2):400–409

    Article  PubMed  CAS  Google Scholar 

  16. Geoffroy V, Kneissel M, Fournier B, Boyde A, Matthias P (2002) High bone resorption in adult aging transgenic mice overexpressing Cbfa1/Runx2 in cells of the osteoblastic lineage. Mol Cell Biol 22:6222–6233

    Article  PubMed  CAS  Google Scholar 

  17. Liu W, Toyosawa S, Furuichi T, Kanatani N, Yoshida C, Liu Y, Himeno M, Narai S, Yamaguchi A, Komori T (2001) Overexpression of Cbfa1 in osteoblasts inhibits osteoblast maturation and causes osteopenia with multiple fractures. J Cell Biol 155:157–166

    Article  PubMed  CAS  Google Scholar 

  18. Merciris D, Marty C, Collet C, de Vernejoul MC, Geoffroy V (2007) Overexpression of the transcriptional factor Runx2 in osteoblasts abolishes the anabolic effect of parathyroid hormone in vivo. Am J Pathol 170:1676–1685

    Article  PubMed  CAS  Google Scholar 

  19. Schiltz C, Prouillet C, Marty C, Merciris D, Collet C, de Vernejoul MC, Geoffroy V (2010) Bone loss induced by Runx2 overexpression in mice is blunted by osteoblastic overexpression of TIMP-1. J Cell Physiol 222(1):219–229

    Article  PubMed  CAS  Google Scholar 

  20. Geoffroy V, Chappard D, Marty C, Libouban H, Ostertag A, Lalande A, de Vernejoul M-C (2010) Strontium ranelate decreases the incidence of new caudal vertebral fractures in a growing mouse model with spontaneous fractures by improving bone microarchitecture. Osteoporos Int. doi:10.1007/s00198-010-1193-6

  21. Paschalis EP, Verdelis K, Doty SB, Boskey AL, Mendelsohn R, Yamauchi M (2001) Spectroscopic characterization of collagen cross-links in bone. J Bone Miner Res 16:1821–1828

    Article  PubMed  CAS  Google Scholar 

  22. Nakamura M, Udagawa N, Matsuura S, Mogi M, Nakamura H, Horiuchi H, Saito N, Hiraoka BY, Kobayashi Y, Takaoka K, Ozawa H, Miyazawa H, Takahashi N (2003) Osteoprotegerin regulates bone formation through a coupling mechanism with bone resorption. Endocrinology 144(12):5441–5449

    Article  PubMed  CAS  Google Scholar 

  23. Yao W, Balooch G, Balooch M, Jiang Y, Nalla RK, Kinney J, Wronski TJ, Lane NE (2006) Sequential treatment of ovariectomized mice with bFGF and risedronate restored trabecular bone microarchitecture and mineralization. Bone 39(3):460–469

    Article  PubMed  CAS  Google Scholar 

  24. Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR (1987) Bone histomorphometry: standardization of nomenclature, symbols, and units. J Bone Miner Res 2:595–610

    Article  PubMed  CAS  Google Scholar 

  25. Li Z, Meredith MP, Hoseyni MS (2001) A method to assess the proportion of treatment effect explained by a surrogate endpoint. Stat Med 20:3175–3188

    Article  PubMed  CAS  Google Scholar 

  26. Turner RT, Maran A, Lotinun S, Hefferan T, Evans GL, Zhang M, Sibonga JD (2001) Animal models for osteoporosis. Rev Endocr Metab Disord 2:117–127

    Article  PubMed  CAS  Google Scholar 

  27. Lelovas PP, Xanthos TT, Thoma SE, Lyritis GP, Dontas IA (2008) The laboratory rat as an animal model for osteoporosis research. Comp Med 58:424–430

    PubMed  CAS  Google Scholar 

  28. Russell RG, Xia Z, Dunford JE, Oppermann U, Kwaasi A, Hulley PA, Kavanagh KL, Triffitt JT, Lundy MW, Phipps RJ, Barnett BL, Coxon FP, Rogers MJ, Watts NB, Ebetino FH (2007) Bisphosphonates: an update on mechanisms of action and how these relate to clinical efficacy. Ann N Y Acad Sci 1117:209–257

    Article  PubMed  CAS  Google Scholar 

  29. Orriss IR, Key ML, Colston KW, Arnett TR (2009) Inhibition of osteoblast function in vitro by aminobisphosphonates. J Cell Biochem 106(1):109–118

    Article  PubMed  CAS  Google Scholar 

  30. Dodds RA, Ferris BD (1987) Changes in orientation of non-collagenous bone matrix in osteoporosis. In: Christiansen C, Johansen JS, Riis BJ (eds) Osteoporosis. Osteopress APS, Copenhagen, pp 309–312

    Google Scholar 

  31. Kuypers R, Tyler M, Kurth LB, Jenkins ID, Hogan DJ (1992) Identification of the loci of the collagen-associated Ehrlich chromogen in type I collagen confirms its role as a trivalent cross-link. Biochem J 283:129–136

    PubMed  CAS  Google Scholar 

  32. Knott L, Tarlton JF, Bailey AJ (1997) Chemistry of collagen cross-linking: biochemical changes in collagen during the partial mineralization of turkey leg tendon. Biochem J 322(Pt 2):535–542

    PubMed  CAS  Google Scholar 

  33. Bailey AJ, Wotton SF, Sims TJ, Thompson PW (1993) Biochemical changes in the collagen of human osteoporotic bone matrix. Connect Tissue Res 29:119–132

    Article  PubMed  CAS  Google Scholar 

  34. Knott L, Bailey AJ (1998) Collagen cross-links in mineralizing tissues: a review of their chemistry, function, and clinical relevance. Bone 22:181–187

    Article  PubMed  CAS  Google Scholar 

  35. Paschalis EP, Burr DB, Mendelsohn R, Hock JM, Boskey AL (2003) Bone mineral and collagen quality in humeri of ovariectomized cynomolgus monkeys given rhPTH(1–34) for 18 months. J Bone Miner Res 18:769–775

    Article  PubMed  CAS  Google Scholar 

  36. Paschalis EP, Boskey AL, Kassem M, Eriksen EF (2003) Effect of hormone replacement therapy on bone quality in early postmenopausal women. J Bone Miner Res 18:955–959

    Article  PubMed  CAS  Google Scholar 

  37. Paschalis EP, Recker R, DiCarlo E, Doty SB, Atti E, Boskey AL (2004) Distribution of collagen cross-links in normal human trabecular bone. J Bone Miner Res 18:1942–1946

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the Alliance for Better Bone Health (Warner Chilcott and Sanofi-Aventis, formerly Procter & Gamble Pharmaceuticals and Sanofi-Aventis).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valerie Geoffroy.

Additional information

Magali Cros is an employee of Warner Chilcott. Roger Phipps was an employee at the time of the study. All other authors have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geoffroy, V., Paschalis, E.P., Libouban, H. et al. Effects of Risedronate in Runx2 Overexpressing Mice, an Animal Model for Evaluation of Treatment Effects on Bone Quality and Fractures. Calcif Tissue Int 88, 464–475 (2011). https://doi.org/10.1007/s00223-011-9480-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-011-9480-6

Keywords

Navigation