Skip to main content

Advertisement

Log in

Imatinib Mesylate Does Not Increase Bone Volume In Vivo

  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Imatinib mesylate is a tyrosine kinase inhibitor used in the management of disorders in which activation of c-Abl, PDGFR, or c-Kit signaling plays a critical role. In vitro, imatinib stimulates osteoblast differentiation, inhibits osteoblast proliferation and survival, and decreases osteoclast development. Patients treated with imatinib exhibit altered bone and mineral metabolism, with stable or increased bone mass. However, recovery from the underlying disease and/or weight gain might contribute to these effects. We therefore investigated the skeletal effects of imatinib in healthy rats. We evaluated the effects of imatinib on bone volume, markers of bone turnover, and bone histomorphometry in mature female rats treated for 5 weeks with either vehicle, imatinib 40 mg/kg daily, or imatinib 70 mg/kg daily. Compared to vehicle, imatinib reduced trabecular bone volume/tissue volume (mean [SD]: vehicle 26.4% [5.4%], low-dose imatinib 24.8% [4.9%] [P = 0.5], high-dose imatinib 21.1% [5.7%] [P = 0.05]), reduced osteoblast surface (mean [SD]: vehicle 12.8% [5.8%], low-dose 6.8% [1.9%] [P < 0.01], high-dose 7.8 [3.1%] [P < 0.05]), and reduced serum osteocalcin (mean change from baseline [95% CI]: vehicle −8.2 [−26.6 to 10.2] ng/ml, low dose −79.7 [−97.5 to −61.9] ng/ml [P < 0.01 vs. vehicle], high-dose −66.0 [−82.0 to −50.0] ng/ml [P < 0.05 vs. vehicle]). Imatinib did not affect biochemical or histomorphometric indices of bone resorption. These results suggest that, in healthy animals, treatment with imatinib does not increase bone mass and that the improvements in bone density reported in patients receiving imatinib may not be a direct effect of the drug.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. O’Brien SG, Guilhot F, Larson RA, Gathmann I, Baccarani M, Cervantes F, Cornelissen JJ, Fischer T, Hochhaus A, Hughes T, Lechner K, Nielsen JL, Rousselot P, Reiffers J, Saglio G, Shepherd J, Simonsson B, Gratwohl A, Goldman JM, Kantarjian H, Taylor K, Verhoef G, Bolton AE, Capdeville R, Druker BJ (2003) Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med 348:994–1004

    Article  PubMed  Google Scholar 

  2. Hochhaus A, O’Brien SG, Guilhot F, Druker BJ, Branford S, Foroni L, Goldman JM, Muller MC, Radich JP, Rudoltz M, Mone M, Gathmann I, Hughes TP, Larson RA, Investigators IRIS (2009) Six-year follow-up of patients receiving imatinib for the first-line treatment of chronic myeloid leukemia. Leukemia 23:1054–1061

    Article  CAS  PubMed  Google Scholar 

  3. Druker BJ, Guilhot F, O’Brien SG, Gathmann I, Kantarjian H, Gattermann N, Deininger MW, Silver RT, Goldman JM, Stone RM, Cervantes F, Hochhaus A, Powell BL, Gabrilove JL, Rousselot P, Reiffers J, Cornelissen JJ, Hughes T, Agis H, Fischer T, Verhoef G, Shepherd J, Saglio G, Gratwohl A, Nielsen JL, Radich JP, Simonsson B, Taylor K, Baccarani M, So C, Letvak L, Larson RA, Investigators IRIS (2006) Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med 355:2408–2417

    Article  CAS  PubMed  Google Scholar 

  4. Verweij J, van Oosterom A, Blay JY, Judson I, Rodenhuis S, van der Graaf W, Radford J, Le Cesne A, Hogendoorn PC, di Paola ED, Brown M, Nielsen OS (2003) Imatinib mesylate (STI-571 Glivec, Gleevec) is an active agent for gastrointestinal stromal tumours, but does not yield responses in other soft-tissue sarcomas that are unselected for a molecular target. Results from an EORTC Soft Tissue and Bone Sarcoma Group phase II study. Eur J Cancer 39:2006–2011

    Article  CAS  PubMed  Google Scholar 

  5. Demetri GD, von Mehren M, Blanke CD, Van den Abbeele AD, Eisenberg B, Roberts PJ, Heinrich MC, Tuveson DA, Singer S, Janicek M, Fletcher JA, Silverman SG, Silberman SL, Capdeville R, Kiese B, Peng B, Dimitrijevic S, Druker BJ, Corless C, Fletcher CD, Joensuu H (2002) Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N Engl J Med 347:472–480

    Article  CAS  PubMed  Google Scholar 

  6. Blanke CD, Demetri GD, von Mehren M, Heinrich MC, Eisenberg B, Fletcher JA, Corless CL, Fletcher CD, Roberts PJ, Heinz D, Wehre E, Nikolova Z, Joensuu H (2008) Long-term results from a randomized phase II trial of standard- versus higher-dose imatinib mesylate for patients with unresectable or metastatic gastrointestinal stromal tumors expressing KIT. J Clin Oncol 26:620–625

    Article  CAS  PubMed  Google Scholar 

  7. Eisenberg BL, Harris J, Blanke CD, Demetri GD, Heinrich MC, Watson JC, Hoffman JP, Okuno S, Kane JM, von Mehren M (2009) Phase II trial of neoadjuvant/adjuvant imatinib mesylate (IM) for advanced primary and metastatic/recurrent operable gastrointestinal stromal tumor (GIST): early results of RTOG 0132/ACRIN 6665. J Surg Oncol 99:42–47

    Article  CAS  PubMed  Google Scholar 

  8. Cools J, DeAngelo DJ, Gotlib J, Stover EH, Legare RD, Cortes J, Kutok J, Clark J, Galinsky I, Griffin JD, Cross NC, Tefferi A, Malone J, Alam R, Schrier SL, Schmid J, Rose M, Vandenberghe P, Verhoef G, Boogaerts M, Wlodarska I, Kantarjian H, Marynen P, Coutre SE, Stone R, Gilliland DG (2003) A tyrosine kinase created by fusion of the PDGFRA and FIP1L1 genes as a therapeutic target of imatinib in idiopathic hypereosinophilic syndrome. N Engl J Med 348:1201–1214

    Article  CAS  PubMed  Google Scholar 

  9. Baccarani M, Cilloni D, Rondoni M, Ottaviani E, Messa F, Merante S, Tiribelli M, Buccisano F, Testoni N, Gottardi E, de Vivo A, Giugliano E, Iacobucci I, Paolini S, Soverini S, Rosti G, Rancati F, Astolfi C, Pane F, Saglio G, Martinelli G (2007) The efficacy of imatinib mesylate in patients with FIP1L1-PDGFRalpha-positive hypereosinophilic syndrome. Results of a multicenter prospective study. Haematologica 92:1173–1179

    Article  CAS  PubMed  Google Scholar 

  10. Ault P, Cortes J, Koller C, Kaled ES, Kantarjian H (2002) Response of idiopathic hypereosinophilic syndrome to treatment with imatinib mesylate. Leukemia Res 26:881–884

    Article  CAS  Google Scholar 

  11. Klion AD, Robyn J, Akin C, Noel P, Brown M, Law M, Metcalfe DD, Dunbar C, Nutman TB (2004) Molecular remission and reversal of myelofibrosis in response to imatinib mesylate treatment in patients with the myeloproliferative variant of hypereosinophilic syndrome. Blood 103:473–478

    Article  CAS  PubMed  Google Scholar 

  12. Pardanani A, Tefferi A (2004) Imatinib therapy for hypereosinophilic syndrome and eosinophilia-associated myeloproliferative disorders. Leukemia Res 28(Suppl 1):S47–S52

    Article  CAS  Google Scholar 

  13. Taylor JR, Brownlow N, Domin J, Dibb NJ (2006) FMS receptor for M-CSF (CSF-1) is sensitive to the kinase inhibitor imatinib and mutation of Asp-802 to Val confers resistance. Oncogene 25:147–151

    CAS  PubMed  Google Scholar 

  14. Dewar AL, Zannettino AC, Hughes TP, Lyons AB (2005) Inhibition of c-fms by imatinib: expanding the spectrum of treatment. Cell Cycle 4:851–853

    CAS  PubMed  Google Scholar 

  15. Dewar AL, Cambareri AC, Zannettino AC, Miller BL, Doherty KV, Hughes TP, Lyons AB (2005) Macrophage colony-stimulating factor receptor c-fms is a novel target of imatinib. Blood 105:3127–3132

    Article  CAS  PubMed  Google Scholar 

  16. Day E, Waters B, Spiegel K, Alnadaf T, Manley PW, Buchdunger E, Walker C, Jarai G (2008) Inhibition of collagen-induced discoidin domain receptor 1 and 2 activation by imatinib, nilotinib and dasatinib. Eur J Pharmacol 599:44–53

    Article  CAS  PubMed  Google Scholar 

  17. Parkkila S, Innocenti A, Kallio H, Hilvo M, Scozzafava A, Supuran CT (2009) The protein tyrosine kinase inhibitors imatinib and nilotinib strongly inhibit several mammalian alpha-carbonic anhydrase isoforms. Bioorg Med Chem Lett 19:4102–4106

    Article  CAS  PubMed  Google Scholar 

  18. Tsao AS, Kantarjian H, Cortes J, O’Brien S, Talpaz M (2003) Imatinib mesylate causes hypopigmentation in the skin. Cancer 98:2483–2487

    Article  PubMed  Google Scholar 

  19. Gambacorti-Passerini C, Tornaghi L, Cavagnini F, Rossi P, Pecori-Giraldi F, Mariani L, Cambiaghi N, Pogliani E, Corneo G, Gnessi L (2003) Gynaecomastia in men with chronic myeloid leukaemia after imatinib. Lancet 361:1954–1956

    Article  PubMed  Google Scholar 

  20. Kerkela R, Grazette L, Yacobi R, Iliescu C, Patten R, Beahm C, Walters B, Shevtsov S, Pesant S, Clubb FJ, Rosenzweig A, Salomon RN, Van Etten RA, Alroy J, Durand JB, Force T (2006) Cardiotoxicity of the cancer therapeutic agent imatinib mesylate. Nat Med 12:908–916

    Article  PubMed  Google Scholar 

  21. Breccia M, Muscaritoli M, Alimena G (2005) Reduction of glycosylated hemoglobin with stable insulin levels in a diabetic patient with chronic myeloid leukemia responsive to imatinib. Haematologica 90(Suppl):ECR21

    PubMed  Google Scholar 

  22. Breccia M, Muscaritoli M, Aversa Z, Mandelli F, Alimena G (2004) Imatinib mesylate may improve fasting blood glucose in diabetic Ph+ chronic myelogenous leukemia patients responsive to treatment. J Clin Oncol 22:4653–4655

    Article  CAS  PubMed  Google Scholar 

  23. Veneri D, Franchini M, Bonora E (2005) Imatinib and regression of type 2 diabetes. N Engl J Med 352:1049–1050

    Article  CAS  PubMed  Google Scholar 

  24. Hagerkvist R, Jansson L, Welsh N (2008) Imatinib mesylate improves insulin sensitivity and glucose disposal rates in rats fed a high-fat diet. Clin Sci 114:65–71

    Article  PubMed  Google Scholar 

  25. Hagerkvist R, Sandler S, Mokhtari D, Welsh N (2007) Amelioration of diabetes by imatinib mesylate (Gleevec): role of beta-cell NF-kappaB activation and anti-apoptotic preconditioning. FASEB J 21:618–628

    Article  PubMed  Google Scholar 

  26. Hagerkvist R, Makeeva N, Elliman S, Welsh N (2006) Imatinib mesylate (Gleevec) protects against streptozotocin-induced diabetes and islet cell death in vitro. Cell Biol Int 30:1013–1017

    Article  PubMed  Google Scholar 

  27. Grey A, O’Sullivan S, Reid IR, Browett P (2006) Imatinib mesylate, increased bone formation, and secondary hyperparathyroidism. N Engl J Med 355:2494–2495

    Article  CAS  PubMed  Google Scholar 

  28. Vandyke K, Fitter S, Dewar AL, Hughes TP, Zannettino AC (2010) Dysregulation of bone remodeling by imatinib mesylate. Blood 115:766–774

    Article  CAS  PubMed  Google Scholar 

  29. O’Sullivan S, Horne A, Wattie D, Porteous F, Callon K, Gamble G, Ebeling P, Browett P, Grey A (2009) Decreased bone turnover despite persistent secondary hyperparathyroidism during prolonged treatment with imatinib. J Clin Endocrinol Metab 94:1131–1136

    Article  PubMed  Google Scholar 

  30. Berman E, Nicolaides M, Maki RG, Fleisher M, Chanel S, Scheu K, Wilson BA, Heller G, Sauter NP (2006) Altered bone and mineral metabolism in patients receiving imatinib mesylate. N Engl J Med 354:2006–2013

    Article  CAS  PubMed  Google Scholar 

  31. Fitter S, Dewar AL, Kostakis P, To LB, Hughes TP, Roberts MM, Lynch K, Vernon-Roberts B, Zannettino AC (2008) Long-term imatinib therapy promotes bone formation in CML patients. Blood 111:2538–2547

    Article  CAS  PubMed  Google Scholar 

  32. Osorio S, Noblejas AG, Duran A, Steegmann JL (2007) Imatinib mesylate induces hypophosphatemia in patients with chronic myeloid leukemia in late chronic phase, and this effect is associated with response. Am J Hematol 82:394–395

    Article  CAS  PubMed  Google Scholar 

  33. Tibullo D, Giallongo C, La Cava P, Berretta S, Stagno F, Chiarenza A, Conticello C, Palumbo GA, Di Raimondo F (2009) Effects of imatinib mesylate in osteoblastogenesis. Exp Hematol 37:461–468

    Article  CAS  PubMed  Google Scholar 

  34. Fierro F, Illmer T, Jing D, Schleyer E, Ehninger G, Boxberger S, Bornhauser M (2007) Inhibition of platelet-derived growth factor receptor beta by imatinib mesylate suppresses proliferation and alters differentiation of human mesenchymal stem cells in vitro. Cell Prolif 40:355–366

    Article  CAS  PubMed  Google Scholar 

  35. O’Sullivan S, Naot D, Callon K, Porteous F, Horne A, Wattie D, Watson M, Cornish J, Browett P, Grey A (2007) Imatinib promotes osteoblast differentiation by inhibiting PDGFR signaling and inhibits osteoclastogenesis by both direct and stromal cell-dependent mechanisms. J Bone Miner Res 22:1679–1689

    Article  PubMed  Google Scholar 

  36. Dewar AL, Farrugia AN, Condina MR, Bik To L, Hughes TP, Vernon-Roberts B, Zannettino AC (2006) Imatinib as a potential antiresorptive therapy for bone disease. Blood 107:4334–4337

    Article  CAS  PubMed  Google Scholar 

  37. Gallet M, Mentaverri R, Sevenet N, Brazier M, Kamel S (2006) Ability of breast cancer cell lines to stimulate bone resorbing activity of mature osteoclasts correlates with an anti-apoptotic effect mediated by macrophage colony stimulating factor. Apoptosis 11:1909–1921

    Article  CAS  PubMed  Google Scholar 

  38. El Hajj Dib I, Gallet M, Mentaverri R, Sevenet N, Brazier M, Kamel S (2006) Imatinib mesylate (Gleevec) enhances mature osteoclast apoptosis and suppresses osteoclast bone resorbing activity. Eur J Pharmacol 551:27–33

    Article  CAS  PubMed  Google Scholar 

  39. Jonsson S, Olsson B, Ohlsson C, Lorentzon M, Mellstrom D, Wadenvik H (2008) Increased cortical bone mineralization in imatinib treated patients with chronic myelogenous leukemia. Haematologica 93:1101–1103

    Article  PubMed  Google Scholar 

  40. Myllarniemi M, Frosen J, Calderon Ramirez LG, Buchdunger E, Lemstrom K, Hayry P (1999) Selective tyrosine kinase inhibitor for the platelet-derived growth factor receptor in vitro inhibits smooth muscle cell proliferation after reinjury of arterial intima in vivo. Cardiovasc Drugs Ther 13:159–168

    Article  CAS  PubMed  Google Scholar 

  41. Ando W, Hashimoto J, Nampei A, Tsuboi H, Tateishi K, Ono T, Nakamura N, Ochi T, Yoshikawa H (2006) Imatinib mesylate inhibits osteoclastogenesis and joint destruction in rats with collagen-induced arthritis (CIA). J Bone Miner Metab 24:274–282

    Article  CAS  PubMed  Google Scholar 

  42. Feldkamp LA (1984) Practical cone-beam algorithm. J Opt Soc Am A Opt Image Sci Vis 1:612–619

    Article  Google Scholar 

  43. Waarsing JH, Day JS, Weinans H (2004) An improved segmentation method for in vivo microCT imaging. J Bone Miner Res 19:1640–1650

    Article  PubMed  Google Scholar 

  44. Hildebrand T, Ruegsegger P (1997) Quantification of bone microarchitecture with the structure model index. Comput Methods Biomech Biomed Engin 1:15–23

    Article  PubMed  Google Scholar 

  45. Hahn M, Vogel M, Pompesius-Kempa M, Delling G (1992) Trabecular bone pattern factor—a new parameter for simple quantification of bone microarchitecture. Bone 13:327–330

    Article  CAS  PubMed  Google Scholar 

  46. Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR (1987) Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 2:595–610

    Article  CAS  PubMed  Google Scholar 

  47. Reid IR (2008) Relationships between fat and bone. Osteoporos Int 19:595–606

    Article  CAS  PubMed  Google Scholar 

  48. Jiang Y, Zhao JJ, Mitlak BH, Wang O, Genant HK, Eriksen EF (2003) Recombinant human parathyroid hormone (1–34) [teriparatide] improves both cortical and cancellous bone structure. J Bone Miner Res 18:1932–1941

    Article  CAS  PubMed  Google Scholar 

  49. Recker RR, Delmas PD, Halse J, Reid IR, Boonen S, Garcia-Hernandez PA, Supronik J, Lewiecki EM, Ochoa L, Miller P, Hu H, Mesenbrink P, Hartl F, Gasser J, Eriksen EF (2008) Effects of intravenous zoledronic acid once yearly on bone remodeling and bone structure. J Bone Miner Res 23:6–16

    Article  CAS  PubMed  Google Scholar 

  50. Hatfield A, Owen S, Pilot PR (2007) In reply to “Cardiotoxicity of the cancer therapeutic agent imatinib mesylate”. Nat Med 13:13, author reply 15–16

    Google Scholar 

Download references

Acknowledgments

This work was funded by the Health Research Council of New Zealand. S. O. is the recipient of postgraduate scholarships from the Australia and New Zealand Bone and Mineral Society and the University of Auckland and a postdoctoral fellowship from the Auckland Medical Research Foundation. A. G. is the recipient of a University of Auckland Early Career Excellence Award. The work at Nordic Bioscience was supported by the Danish research foundation (Den Danske forskningsfond). We thank Novartis for the gift of imatinib and Juerg Gasser (Novartis Institute for BioMedical Research, Basel Area, Switzerland) for his assistance in developing the study protocol.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susannah O’Sullivan.

Additional information

P. Browett has received research funding and consulting fees from Novartis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

O’Sullivan, S., Naot, D., Callon, K.E. et al. Imatinib Mesylate Does Not Increase Bone Volume In Vivo. Calcif Tissue Int 88, 16–22 (2011). https://doi.org/10.1007/s00223-010-9429-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-010-9429-1

Keywords

Navigation