Skip to main content

Advertisement

Log in

Three-Dimensional Cortical Bone Microstructure in a Rat Model of Hypoxia-Induced Growth Retardation

  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Little is known about hypoxia-induced modification of the canal network in the cortical bone despite its involvement in intracortical vascularity and bone blood supply. In this study, we examined the effect of chronic hypoxia on the canal network in postnatal bone. Tibiae were harvested from 4- and 8-week-old rats (hyp-4 and -8, n = 8 each), whose growth was retarded owing to postnatal exposure to hypoxia (12–14% O2), and from 3- and 4-week-old normoxic rats (cnt-4 and -5, n = 8 each), which were similar in tibial length and cortical cross-sectional area to hyp-4 and -8, respectively. The diaphyseal canals were detected by monochromatic synchrotron radiation CT with a 3.1-μm voxel resolution. The anatomical properties of the canal network were compared between age- or size-matched hypoxic and normoxic groups. The canals were larger in diameter, were more densely distributed and connected, and opened into the marrow cavity with a higher density in hyp-4 than in cnt-4. The canal density and connectivity were also higher in hyp-4 than in cnt-3. The canal diameter, density, and connectivity were smaller in hyp-8 than in cnt-4; however, the densities of endocortical and periosteal canal openings did not differ between hyp-8 and cnt-4. We concluded that chronic hypoxia enhanced the formation of cortical canal networks at the postnatal developmental stage, probably facilitating intra- and transcortical vascularization and bone perfusion accordingly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Morris MA, Kelly PJ (1980) Use of tracer microspheres to measure bone blood flow in conscious dogs. Calcif Tissue Int 32:69–76

    Article  CAS  PubMed  Google Scholar 

  2. Bloomfield SA, Hogan HA, Delp MD (2002) Decreases in bone blood flow and bone material properties in aging Fischer-344 rats. Clin Orthop 396:248–257

    Article  PubMed  Google Scholar 

  3. Vanderhoef PJ, Kelly PJ, Janes JM, Peterson LF (1963) Growth and structure of bone distal to an arteriovenous fistula: quantitative analysis of tetracycline-induced transverse growth patterns. J Bone Joint Surg Br 45:582–596

    CAS  PubMed  Google Scholar 

  4. Griffith JF, Yeung DK, Antonio GE, Wong SY, Kwok TC, Woo J, Leung PC (2006) Vertebral marrow fat content and diffusion and perfusion indexes in women with varying bone density: MR evaluation. Radiology 241:831–838

    Article  PubMed  Google Scholar 

  5. Brookes M, Revell W (1998) Blood supply of bone: scientific aspects. Springer-Verlag, London

    Google Scholar 

  6. Brandi ML, Collin-Osdoby P (2006) Vascular biology and the skeleton. J Bone Miner Res 21:183–192

    Article  CAS  PubMed  Google Scholar 

  7. Gerber HP, Ferrara N (2000) Angiogenesis and bone growth. Trends Cardiovasc Med 10:223–228

    Article  CAS  PubMed  Google Scholar 

  8. Blumer MJ, Longato S, Fritsch H (2008) Structure, formation and role of cartilage canals in the developing bone. Ann Anat 190:305–315

    Article  PubMed  Google Scholar 

  9. Leterrier C, Constantin P (1999) Early bone growth in chickens genetically selected for a high and low growth rate. Growth Dev Aging 63:75–84

    CAS  PubMed  Google Scholar 

  10. Williams B, Waddington D, Murray DH, Farquharson C (2004) Bone strength during growth: influence of growth rate on cortical porosity and mineralization. Calcif Tissue Int 74:236–245

    Article  CAS  PubMed  Google Scholar 

  11. Cooper DM, Thomas CD, Clement JG, Turinsky AL, Sensen CW, Hallgrímsson B (2007) Age-dependent change in the 3D structure of cortical porosity at the human femoral midshaft. Bone 40:957–965

    Article  PubMed  Google Scholar 

  12. Matsumoto T, Yoshino M, Uesugi K, Tanaka M (2007) Biphasic change and disuse-mediated regression of canal network structure in cortical bone of growing rats. Bone 41:239–246

    Article  CAS  PubMed  Google Scholar 

  13. Schnitzler CM, Mesquita JM, Pettifor JM (2009) Cortical bone development in black and white South African children: iliac crest histomorphometry. Bone 44:603–611

    Article  CAS  PubMed  Google Scholar 

  14. Hunter C, Clegg EJ (1973) Changes in skeletal proportions of the rat in response to hypoxic stress. J Anat 114:201–219

    CAS  PubMed  Google Scholar 

  15. Nelson ML, Cons JM (1975) Pituitary hormones and growth retardation in rats raised at simulated high altitude (3800 m). Environ Physiol Biochem 5:273–282

    CAS  PubMed  Google Scholar 

  16. Alippi RM, Barceló AC, Río ME, Bozzini CE (1983) Growth retardation in the early developing rat exposed to continuous hypobaric hypoxia. Acta Physiol Lat Am 33:1–5

    CAS  PubMed  Google Scholar 

  17. Peterson RE, Wetzel GT (2004) Growth failure in congenital heart disease: where are we now? Curr Opin Cardiol 19:81–83

    Article  PubMed  Google Scholar 

  18. Witzel C, Sreeram N, Coburger S, Schickendantz S, Brockmeier K, Schoenau E (2006) Outcome of muscle and bone development in congenital heart disease. Eur J Pediatr 165:168–174

    Article  PubMed  Google Scholar 

  19. Vogt KN, Manlhiot C, Van Arsdell G, Russell JL, Mital S, McCrindle BW (2007) Somatic growth in children with single ventricle physiology impact of physiologic state. J Am Coll Cardiol 50:1876–1883

    Article  PubMed  Google Scholar 

  20. Weintraub RG, Menahem S (1993) Growth and congenital heart disease. J Paediatr Child Health 29:95–98

    Article  CAS  PubMed  Google Scholar 

  21. Semenza GL (2007) Regulation of tissue perfusion in mammals by hypoxia-inducible factor 1. Exp Physiol 92:988–991

    Article  CAS  PubMed  Google Scholar 

  22. Fong GH (2008) Mechanisms of adaptive angiogenesis to tissue hypoxia. Angiogenesis 11:121–140

    Article  PubMed  Google Scholar 

  23. Nakanishi K, Inoue M, Sugawara E, Sano S (1997) Ischemic and reperfusion injury of cyanotic myocardium in chronic hypoxic rat model: changes in cyanotic myocardial antioxidant system. J Thorac Cardiovasc Surg 114:1088–1096

    Article  CAS  PubMed  Google Scholar 

  24. Matsumoto T, Yoshino M, Asano T, Uesugi K, Todoh M, Tanaka M (2006) Monochromatic synchrotron radiation μCT reveals disuse-mediated canal network rarefaction in cortical bone of growing rat tibiae. J Appl Physiol 100:274–280

    Article  PubMed  Google Scholar 

  25. Maes F, Collignon A, Vandermeulen D, Marchal G, Suetens P (1997) Multimodality image registration by maximization of mutual information. IEEE Trans Med Imaging 16:187–198

    Article  CAS  PubMed  Google Scholar 

  26. Bonse U, Busch F (1996) X-ray computed microtomography (microCT) using synchrotron radiation (SR). Prog Biophys Mol Biol 65:133–169

    Article  CAS  PubMed  Google Scholar 

  27. Schneider P, Stauber M, Voide R, Stampanoni M, Donahue LR, Müller R (2007) Ultrastructural properties in cortical bone vary greatly in two inbred strains of mice as assessed by synchrotron light based micro- and nano-CT. J Bone Miner Res 22:1557–1570

    Article  PubMed  Google Scholar 

  28. Peyrin F (2009) Investigation of bone with synchrotron radiation imaging: from micro to nano. Osteoporos Int 20:1057–1063

    Article  CAS  PubMed  Google Scholar 

  29. Nuzzo S, Peyrin F, Cloetens P, Baruchel J, Boivin G (2002) Quantification of the degree of mineralization of bone in three dimensions using synchrotron radiation microtomography. Med Phys 29:2672–2681

    Article  PubMed  Google Scholar 

  30. Kazakia GJ, Burghardt AJ, Cheung S, Majumdar S (2008) Assessment of bone tissue mineralization by conventional X-ray microcomputed tomography: comparison with synchrotron radiation microcomputed tomography and ash measurements. Med Phys 35:3170–3179

    Article  CAS  PubMed  Google Scholar 

  31. Moromisato DY, Moromisato MY, Brasel JA, Cooper DM (1999) Effect of growth hormone therapy in mitigating hypoxia-induced and food restriction-induced growth retardation in the newborn rat. Crit Care Med 27:2234–2238

    Article  CAS  PubMed  Google Scholar 

  32. Tarasiuk A, Segev Y (2007) Chronic upper airway resistive loading induces growth retardation via the GH/IGF-I axis in prepubescent rats. J Appl Physiol 102:913–918

    Article  CAS  PubMed  Google Scholar 

  33. Utting JC, Robins SP, Brandao-Burch A, Orriss IR, Behar J, Arnett TR (2006) Hypoxia inhibits the growth, differentiation and bone-forming capacity of rat osteoblasts. Exp Cell Res 312:1693–1702

    Article  CAS  PubMed  Google Scholar 

  34. Bozec A, Bakiri L, Hoebertz A, Eferl R, Schilling AF, Komnenovic V, Scheuch H, Priemel M, Stewart CL, Amling M, Wagner EF (2008) Osteoclast size is controlled by Fra-2 through LIF/LIFreceptor signaling and hypoxia. Nature 454:221–225

    Article  CAS  PubMed  Google Scholar 

  35. Morris-Thurgood JA, Frenneaux MP (2000) Diastolic ventricular interaction and ventricular diastolic filling. Heart Fail Rev 5:307–323

    Article  CAS  PubMed  Google Scholar 

  36. Gurudevan SV, Malouf PJ, Auger WR, Waltman TJ, Madani M, Raisinghani AB, DeMaria AN, Blanchard DG (2007) Abnormal left ventricular diastolic filling in chronic thromboembolic pulmonary hypertension: true diastolic dysfunction or left ventricular underfilling? J Am Coll Cardiol 49:1334–1339

    Article  PubMed  Google Scholar 

  37. Bass DH, Adams LP, Tregidga A (1994) The effects of arterial interruption on bone growth in a rat model. S Afr J Surg 32:149–152

    CAS  PubMed  Google Scholar 

  38. Chin AJ, Stephens P, Goldmuntz E, Leonard MB (2009) Serum alkaline phosphatase reflects post-Fontan hemodynamics in children. Pediatr Cardiol 30:138–145

    Article  PubMed  Google Scholar 

  39. Giuliani DC, Hall JC, Morse BS (1986) Strategies of hemopoietic stress adaptation within the medullary cavity. Anat Rec 216:528–533

    Article  CAS  PubMed  Google Scholar 

  40. Bozzini C, Olivera MI, Huygens P, Alippi RM, Bozzini CE (2009) Long-term exposure to hypobaric hypoxia in rat affects femur cross-sectional geometry and bone tissue material properties. Ann Anat 191:212–217

    Article  PubMed  Google Scholar 

  41. Parfitt AM (1983) The physiologic and clinical significance of bone histomorphometric data. In: Recker RR (ed) Bone histomorphometry: techniques and interpretation. CRC Press, Boca Raton, FL, pp 143–223

    Google Scholar 

  42. Boivin G, Meunier PJ (2002) The degree of mineralization of bone tissue measured by computerized quantitative contact microradiography. Calcif Tissue Int 70:503–511

    Article  CAS  PubMed  Google Scholar 

  43. Jowsey J (1964) Variations in bone mineralization with age and disease. In: Frost HM (ed) Bone biodynamics. Little Brown and Company, Boston, pp 461–479

    Google Scholar 

  44. Eriksen EF, Eghbali-Fatourechi GZ, Khosla S (2007) Remodeling and vascular spaces in bone. J Bone Miner Res 22:1–6

    Article  CAS  PubMed  Google Scholar 

  45. Wang Y, Wan C, Deng L, Liu X, Cao X, Gilbert SR, Bouxsein ML, Faugere MC, Guldberg RE, Gerstenfeld LC, Haase VH, Johnson RS, Schipani E, Clemens TL (2007) The hypoxia-inducible factor alpha pathway couples angiogenesis to osteogenesis during skeletal development. J Clin Invest 117:1616–1626

    Article  CAS  PubMed  Google Scholar 

  46. Schipani E, Maes C, Carmeliet G, Semenza GL (2009) Regulation of osteogenesis–angiogenesis coupling by HIFs and VEGF. J Bone Miner Res 24:1347–1353

    Article  CAS  PubMed  Google Scholar 

  47. Kiaer T (1994) Bone perfusion and oxygenation. Animal experiments and clinical observations. Acta Orthop Scand Suppl 257:1–41

    CAS  PubMed  Google Scholar 

  48. Bridgeman G, Brookes M (1996) Blood supply to the human femoral diaphysis in youth and senescence. J Anat 188:611–621

    PubMed  Google Scholar 

  49. McCarthy I (2006) The physiology of bone blood flow: a review. J Bone Joint Surg Am 88(Suppl 3):4–9

    Article  PubMed  Google Scholar 

  50. Jelkmann W (1992) Erythropoietin: structure, control of production, and function. Physiol Rev 72:449–489

    CAS  PubMed  Google Scholar 

  51. Perloff JK (1993) Systemic complications of cyanosis in adults with congenital heart disease. Cardiol Clin 11:689–699

    CAS  PubMed  Google Scholar 

  52. Tuttle JL, Nachreiner RD, Bhuller AS, Condict KW, Connors BA, Herring BP, Dalsing MC, Unthank JL (1997) Shear level influences resistance artery remodeling: wall dimensions, cell density, and eNOS expression. Am J Physiol Heart Circ Physiol 273:H628–H633

    Google Scholar 

  53. Koller A (2006) Flow-dependent remodeling of small arteries: the stimuli and the sensors are (still) in question. Circ Res 99:6–9

    Article  CAS  PubMed  Google Scholar 

  54. Humphrey JD (2008) Mechanisms of arterial remodeling in hypertension: coupled roles of wall shear and intramural stress. Hypertension 52:195–200

    Article  CAS  PubMed  Google Scholar 

  55. Skedros JG, Hunt KJ, Hughes PE, Winet H (2003) Ontogenetic and regional morphologic variations in the turkey ulna diaphysis: implications for functional adaptation of cortical bone. Anat Rec A Discov Mol Cell Evol Biol 273:609–629

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The synchrotron radiation experiments were performed at SPring-8 with the approval of the Japan Synchrotron Radiation Research Institute. Part of this study was supported by Grants-in-Aid for Scientific Research (20300158) from the Ministry of Education, Culture, Sports, Science, and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Matsumoto.

Additional information

The authors have stated that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsumoto, T., Ando, N., Tomii, T. et al. Three-Dimensional Cortical Bone Microstructure in a Rat Model of Hypoxia-Induced Growth Retardation. Calcif Tissue Int 88, 54–62 (2011). https://doi.org/10.1007/s00223-010-9415-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-010-9415-7

Keywords

Navigation