Skip to main content

Advertisement

Log in

Intermittent PTH1–34 Causes DNA and Chromosome Breaks in Osteoblastic and Nonosteoblastic Cells

  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Toxicological studies have demonstrated that intermittent PTH1–34 treatment is associated with an increased incidence of osteosarcoma in Fischer 344 rats. Comet and micronucleus (MN) tests, standard methods to evaluate genotoxic potential of drugs, were used to detect DNA and chromosome breaks, respectively, after PTH1–34 treatment. MC3T3 cells, primary osteoblast calvarial cells, and human osteoblasts were treated with PTH1–34 (50 and 100 nM) for 6 h/day for 21 days to mimic intermittent administration. Genotoxic assays were performed at 6 h and 7, 14, and 21 days. Osteoblasts extracted from bone marrow of mice treated with daily subcutaneous PTH1–34 injections (20 and 40 μg/kg) for 10 weeks as well as Hep-2, HeLa, and Hep-G2 cells were also tested. We observed a significant increase in DNA lesions and MN prevalence in human and murine osteoblasts treated with PTH1–34 compared to controls (P < 0.01). The effect observed in vitro and confirmed in vivo was time- and dose-dependent. For nonosteoblastic Hep-2 and HeLa cells we observed increased DNA damage and MN prevalence only later in the course of the protocol, after 21 days of treatment (P < 0.01). In Hep-G2 cells intermittent PTH1–34 did not induce DNA damage or chromosome breaks. Our results demonstrated that intermittent PTH increases DNA and chromosome breaks in osteoblasts. This genotoxic effect is attenuated in nonosteoblastic cells, and the ability to induce DNA damage is lost in cells with detoxification properties (HepG2 cells) tested in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Quattrocchi E, Kourlas H (2004) Teriparatide: a review. Clin Ther 26:841–854

    Article  CAS  PubMed  Google Scholar 

  2. Kousteni S, Bilezikian JP (2008) The cell biology of parathyroid hormone in osteoblasts. Curr Osteoporos Rep 6:72–76

    Article  PubMed  Google Scholar 

  3. Hodsman AB, Bauer DC, Dempster DW, Dian L, Hanley DA, Harris ST, Kendler DL, McClung MR, Miller PD, Olszynski WP, Orwoll E, Yuen CK (2005) Parathyroid hormone and teriparatide for the treatment of osteoporosis: a review of the evidence and suggested guidelines for its use. Endocr Rev 26:688–703

    Article  CAS  PubMed  Google Scholar 

  4. Tzioupis CC, Giannoudis PV (2006) the safety and efficacy of parathyroid hormone (PTH) as a biological response modifier for the enhancement of bone regeneration. Curr Drug Saf 1:189–203

    Article  CAS  PubMed  Google Scholar 

  5. Vahle JL, Satto M, Long LL (2002) Skeletal changes in rats given daily subcutaneous injections of recombinant human parathyroid hormone (1–34) for 2 years and relevance to human safety. Toxicol Pathol 30:312–321

    Article  CAS  PubMed  Google Scholar 

  6. Vahle JL, Long GG, Sandusky G, Westmore M, Ma YL, Sato M (2004) Bone neoplasms in F344 rats given teriparatide [rhPTH(1–34)] are dependent on duration of treatment and dose. Toxicol Pathol 32:426–438

    Article  CAS  PubMed  Google Scholar 

  7. Food and Drug Administration (2010, May) Report in Medwatch

  8. Boer J, Hoeijmakers HJJ (2000) Nucleotide excision repair and human syndromes. Carcinogenesis 21:453–460

    Article  PubMed  Google Scholar 

  9. Fearon ER, Volgelstein B (1990) A genetic model for colorectal tumorigenesis. Cell 61:759–767

    Article  CAS  PubMed  Google Scholar 

  10. Mccann J, Choi E, Yamasaki E, Ames BM (1975) Detection of carcinogens in the Salmonella/microsome test: assay of 300 chemicals. Proc Natl Acad Sci USA 72:5135–5139

    Article  CAS  PubMed  Google Scholar 

  11. Sudo H, Kodama HA, Amagai Y, Yamamoto S, Kasai S (1983) In vitro differentiation and calcification in a new clonal osteogenic cell line derived from newborn mouse calvaria. J Cell Biol 96:191–198

    Article  CAS  PubMed  Google Scholar 

  12. Chavassieux PM, Chenu C, Valentin-Opran A, Merle B, Delmas PD, Hartmann DJ, Saez S, Meunier PJ (1990) Influence of experimental conditions on osteoblast activity in human primary bone cell cultures. J Bone Miner Res 5:337–343

    Article  CAS  PubMed  Google Scholar 

  13. Castro CH, Shin CS, Stains JP, Cheng SL, Sheikh S, Mbalaviele G, Szejnfeld VL, Civitelli R (2004) Targeted expression of a dominant-negative N-cadherin in vivo delays peak bone mass and increases adipogenesis. Cell Sci 117:2853–2864

    Article  CAS  Google Scholar 

  14. Bellido T, Afshan Ali A, Plotkin LI, Fu Q, Gubrij I, Roberson PK, Weinstein RS, O’Brien CA, Manolagas SC, Jilka RL (2003) Proteasomal degradation of Runx2 shortens parathyroid hormone–induced anti-apoptotic signaling in osteoblasts. A putative explanation for why intermittent administration is needed for bone metabolism. J Biol Chem 278:50259–50272

    Article  CAS  PubMed  Google Scholar 

  15. Ogita M, Rached MT, Dworakowski E, Bilezikian JP, Kousteni S (2003) Differentiation and proliferation of periosteal osteoblast progenitors are differentially regulated by estrogens and intermittent parathyroid hormone administration. Endocrinology 149:5713–5723

    Article  Google Scholar 

  16. Locklin RM, Khosla S, Turner RT, Riggs BL (2003) Mediators of the biphasic responses of bone to intermittent and continuously administered parathyroid hormone. J Cell Biochem 89:180–190

    Article  CAS  PubMed  Google Scholar 

  17. Lima PLA, Ribeiro LR (2003) Teste de mutação gênica em células de mamíferos (mouse lymphoma assay). In: Ribeiro LR, Salvadori DMF, Marques EK (eds) Mutagênese ambiental, 1st edn. Ulbra, Brazil, pp 113–149

    Google Scholar 

  18. Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175:184–191

    Article  CAS  PubMed  Google Scholar 

  19. Klaude M, Eriksson S, Nygren J, Ahnström G (1996) The comet assay: mechanisms and technical considerations. Mutat Res 363:89–96

    PubMed  Google Scholar 

  20. McKelvey-Martin VJ, Melia N, Walsh IK, Johnston SR, Hughes CM, Lewis SE, Thompson W (1997) Two potential clinical applications of the alkaline single-cell gel electrophoresis assay: (1) human bladder washings and transitional cell carcinoma of the bladder; and (2) human sperm and male infertility. Mutat Res 375:93–104

    CAS  PubMed  Google Scholar 

  21. Miller BM, Pujadas E, Gocke E (1995) Evaluation of micronucleus test in vitro using Chinese hamster cells. Environ Mol Mut 26:240–247

    Article  CAS  Google Scholar 

  22. Fenech M (1993) The cytokinesis-block micronucleus technique: a detailed description of the method and its application to genotoxicity studies in human populations. Mutat Res 285:35–44

    CAS  PubMed  Google Scholar 

  23. Rudd NL, Hoar DI, Greentree CL, Dimnik LS, Hennig UGG (1988) Micronucleus assay in human fibroblasts: a measure of spontaneous chromosomal instability and mutagen hypersensitivity. Environ Mol Mutagen 12:3–13

    CAS  PubMed  Google Scholar 

  24. Schmid W, Arakaki DT, Breslau NA, Culbertson JS (1971) The Chinese hamster bone marrow as in vivo test system. Cytogenetic results on basis aspects of the methodology obtained with alkylating agents. Hum Genet 2:103–118

    Article  Google Scholar 

  25. Salvadori DMF, Ribeiro LR, Fenech M (2003) Teste do micronúcleo em células humanas in vitro. In: Ribeiro LR, Salvadori DMF, Marques EK (eds) Mutagênese ambiental, 1st edn. Ulbra, Brazil, pp 201–223

    Google Scholar 

  26. Jolette J, Wilker CE, Smith SY, Doyle N, Hardisty JF, Metcalfe AJ, Marriott AJ, Fox J, Wells DS (2006) Defining a noncarcinogenic dose of recombinant human parathyroid hormone 1–84 in a 2-year study in Fisher 344 rats. Toxicol Pathol 34:929–940

    Article  CAS  PubMed  Google Scholar 

  27. Valentin-Severin I, LeHegarat L, Lhuguenot JC, LeBon AM, Chagnon MC (2003) Use of HepG2 cell line for direct or indirect mutagens screening: comparative investigation between comet and micronucleus assays. Mutat Res 536:79–90

    CAS  PubMed  Google Scholar 

  28. Kassie F, Parzefall W, Knasmüller S (2000) Single cell gel electrophoresis assay: a new technique for human biomonitoring studies. Mutat Res 463:13–31

    Article  CAS  PubMed  Google Scholar 

  29. Wysolmerski JJ, Stewart AF (1998) The physiology of parathyroid hormone–related protein: an emerging role as a developmental factor. Annu Rev Physiol 60:431–460

    Article  CAS  PubMed  Google Scholar 

  30. Philbrick WM, Wysolmerski JJ, Galbraith S, Holt E, Orloff JJ, Yang KH, Vasavada RC, Weir RC, Broadus AE, Stewart AF (1996) Defining the roles of parathyroid hormone-related protein in normal physiology. Physiol Rev 76:127–173

    CAS  PubMed  Google Scholar 

  31. Li X, Drucker DJ (1994) Parathyroid hormone-related peptide is a downstream target for ras and src activation. J Biol Chem 269:6263–6266

    CAS  PubMed  Google Scholar 

  32. Luparello C, Burtis WJ, Raue F, Birch MA, Gallagher JA (1995) Parathyroid hormone-related peptide and 8701-BC breast cancer cell growth and invasion in vitro: evidence for growth-inhibiting and invasion-promoting effects. Mol Cell Endocrinol 111:225–232

    Article  CAS  PubMed  Google Scholar 

  33. Luparello C, Birch MA, Gallagher JA, Burts WJ (1997) Clonal heterogeneity of the growth and invasive response of a human breast carcinoma cell line to parathyroid hormone-related peptide fragments. Carcinogenesis 18:23–29

    Article  CAS  PubMed  Google Scholar 

  34. Whitfield JF, Morley P, Willick GE (2002) Parathyroid hormone, its fragments and their analogs for the treatment of osteoporosis. Treat Endocrinol 1:175–190

    Article  CAS  PubMed  Google Scholar 

  35. Whitfield JF (2001) The bone growth-stimulating PTH and osteosarcoma. Medscape Womens Health 6:7

    CAS  PubMed  Google Scholar 

  36. Nervina JM, Magyar CE, Pirih FQ, Tetradis S (2006) PGC-1α is induced by parathyroid hormone and coactives Nurr1-mediated promoter activity in osteoblasts. Bone 39:1018–1025

    Article  CAS  PubMed  Google Scholar 

  37. Artru P, Tournigand C, Mabro M, Lucchi E, Louvet C, DeGramont A, Krulik M (2001) Primary hyperparathyroidism associated with colon cancer. Gastroenterol Clin Biol 25:208–209

    CAS  PubMed  Google Scholar 

  38. Kawamura YJ, Kazama S, Miyahara T, Masaki T, Muto T (1999) Sigmoid colon cancer associated with primary hyperparathyroidism: report of a case. Surg Today 29:789–790

    Article  CAS  PubMed  Google Scholar 

  39. Betancourt M, Wirfel KL, Raymond AK, Yasko AW, Lee J, Vassilopoulou-Sellin R (2003) Osteosarcoma of bone in a patient with primary hyperparathyroidism: a case report. J Bone Miner Res 18:163–166

    Article  CAS  PubMed  Google Scholar 

  40. Whitfield J, Bird RP, Morley P, Willick GE, Barbier JR, MacLean S, Ross V (2003) The effects of parathyroid hormone fragments on bone formation and their lack of effects on the initiation of colon carcinogenesis in rats as indicated by preneoplastic aberrant crypt formation. Cancer Lett 200:107–113

    Article  CAS  PubMed  Google Scholar 

  41. Caderni G, Lodovici M, Salvadori M, Bianchini F, Dolara P (1986) Inhibition of the mutagenic activity of some heterocyclic dietary carcinogens and other mutagenic/carcinogenic compounds by rat organ preparations. Mutat Res 169:35–40

    Article  CAS  PubMed  Google Scholar 

  42. Jilka RL, O’Brien CA, Ali AA, Roberson PK, Weinstein RS, Manolagas SC (2009) Intermittent PTH stimulates periosteal bone formation by actions on post-mitotic preosteoblasts. Bone 44:275–286

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are indebted to Dr. Rosa Maria Rodrigues Pereira, Rheumatology Division, São Paulo University, for providing MC3T3 cells and to Dr. Aluisio Barbosa de Carvalho, Nephrology Division, UNIFESP, for the histomorphometric analyses. This work was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo, Brazil. E. C. A. O. received a doctoral scholarship from the CAPES Foundation, Ministry of Education, Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charlles Heldan de Moura Castro.

Additional information

Disclosures

None.

Electronic supplementary material

223_2010_9396_MOESM1_ESM.jpg

Supplemental Fig. 1 Intermittent PTH1–34 induces DNA breaks in MC3T3 cells. Representative sample image of in vitro comet assay. MC3T3 cells grown in αMEM supplemented with 10% FCS and antibiotics were treated 6 h/day for 21 days with PTH1–34 at 50 and 100 nM. a MC3T3 cells treated intermittently with PTH1–34 at 100 nM for 14 days. b Negative control (JPEG 386 kb)

223_2010_9396_MOESM2_ESM.jpg

Supplemental Fig. 2 Intermittent PTH1–34 induces DNA breaks in human osteoblasts. Representative sample image of in vitro assay. Human osteoblasts grown in αMEM supplemented with 10% FCS and antibiotics were treated 6 h/day for 21 days with PTH1–34 at 50 and 100 nM. a Human osteoblasts treated intermittently with PTH1–34 at 50 nM for 21 days. b Negative control (JPEG 366 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alves de Oliveira, E.C., Szejnfeld, V.L., Pereira da Silva, N. et al. Intermittent PTH1–34 Causes DNA and Chromosome Breaks in Osteoblastic and Nonosteoblastic Cells. Calcif Tissue Int 87, 424–436 (2010). https://doi.org/10.1007/s00223-010-9396-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-010-9396-6

Keywords

Navigation