Skip to main content

Advertisement

Log in

Bisphosphonate Inhibits Bone Turnover in OPG−/− Mice Via a Depressive Effect on Both Osteoclasts and Osteoblasts

  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Osteoclast differentiation and functioning are strictly controlled by RANKL expressed on osteoblast membrane surfaces, but whether osteoclasts exert control over osteoblasts remains unclear. In the present study, we examined the effect of an osteoclast inhibitor, a bisphosphonate (BP), on the response of maxillary bone to mechanical stress in a high-turnover osteoporosis model (OPG−/− mice, a model of juvenile Paget disease). Mechanical stress was induced by use of orthodontic elastics to move the maxillary first molar. BP was administered once per day beginning 5 days before elastic insertion. Relative to wild type (WT), in the OPG−/− mice tooth movement distance was greater, resorption of the interradicular septum occurred to a greater extent, the osteoclast count was higher, and serum alkaline phosphatase (ALP) was higher. However, administration of BP to OPG−/− mice reduced tooth movement distance, increased bone volume at the interradicular septum, decreased the osteoclast count, and reduced serum ALP. BP administration also caused a temporal shift in peak Runx2 staining in OPG−/− mice, such that the overall staining time course was similar to that observed for WT mice. We conclude that BP administration not only inhibited osteoclast activity in OPG−/− mice but also systemically and locally inhibited osteoblast activity. It is possible that osteoclasts are able to exert some negative control over osteoblasts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sato Y, Sakai H, Kobayashi Y, Shibasaki Y, Sasaki T (2000) Bisphosphonate administration alters subcellular localization of vacuolar-type H+-ATPase and cathepsin K in osteoclasts during experimental movement of rat molars. Anat Rec 260:72–80

    Article  CAS  PubMed  Google Scholar 

  2. Sato Y, Shibasaki Y, Sasaki T (2000) Effects of bisphosphonate administration on root and bone resorption during experimental movement of rat molars. In: Davidovitch Z, Mah J (eds) Biological mechanisms of tooth movement and craniofacial adaptation. EBSCO Media, Birmingham, pp 243–252

    Google Scholar 

  3. Chung HS, Sasaki T, Sato Y, Shibasaki Y (1999) H+-ATPase inhibitor, bafilomycin A1, reduces bone resorption during experimental movement of rat molars. Orthodont Waves 58:183–192

    Google Scholar 

  4. Yokoya K, Sasaki T, Shibasaki Y (1997) Distributional changes of osteoclasts and preosteoclastic cells in periodontal tissues during experimental tooth movement as revealed by quantitative immunohistochemistry of H+-ATPase. J Dent Res 76:580–587

    Article  CAS  PubMed  Google Scholar 

  5. Suda T, Takahasi N, Udagawa N, Jimi E, Gillespie MT, Martin TJ (1999) Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr Rev 20:345–357

    Article  CAS  PubMed  Google Scholar 

  6. Kong YY, Yashida H, Sarosi I, Tan HL, Timms E, Capparelli C, Morony S, Oliveira-dos-Santos AJ, Van G, Itie A, Khoo W, Wakeham A, Dunstan CR, Lacey DL, Mak TW, Boyle WJ, Penninger JM (1999) OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 397:315–323

    Article  CAS  PubMed  Google Scholar 

  7. Dougall WC, Glaccum M, Charrier K, Rohrbach K, Brasel K, De Smedt T, Daro E, Smith J, Tometsko ME, Maliszewski CR, Armstrong A, Shen V, Bain S, Cosman D, Anderson D, Morrissey PJ, Peschon JJ, Schuh J (1999) RANK is essential for osteoclast and lymph node development. Genes Dev 13:2412–2424

    Article  CAS  PubMed  Google Scholar 

  8. Li J, Sarosi I, Yan XQ, Morony S, Capparelli C, Tan HL, McCabe S, Elliott R, Scully S, Van G, Kaufman S, Juan SC, Sun Y, Tarpley J, Martin L, Christensen K, McCabe J, Kostenuik P, Hsu H, Fletcher F, Dunstan CR, Lacey DL, Boyle WJ (2000) RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism. Proc Natl Acad Sci USA 97:1566–1571

    Article  CAS  PubMed  Google Scholar 

  9. Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chan MS, Luthy R, Nguyen HQ, Wooden S, Bennett L, Boone T, Shimamoto G, DeRose M, Elliott R, Colombero A, Tan HL, Trail G, Sullivan J, Davy E, Bucay N, Renshaw-Gegg L, Hughes TM, Hill D, Pattison W, Campbell P, Sander S, Van G, Tarpley J, Derby P, Lee R, Boyle WJ (1997) Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89:309–319

    Article  CAS  PubMed  Google Scholar 

  10. Bucay N, Sarosi I, Dunstan CR, Morony S, Tarpley J, Capparelli C, Scully S, Tan HL, Xu W, Lacey DL, Boyle WJ, Simonet WS (1998) Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev 12:1260–1268

    Article  CAS  PubMed  Google Scholar 

  11. Mizuno A, Amizuka N, Irie K, Murakami A, Fujise N, Kanno T, Sato Y, Nakagawa N, Yasuda H, Mochizuki S, Gomibuchi T, Yano K, Shima N, Washida N, Tsuda E, Morinaga T, Higashino K, Ozawa H (1998) Severe osteoporosis in mice lacking osteoclastogenesis inhibitory factor/osteoprotegerin. Biochem Biophys Res Commun 247:610–615

    Article  CAS  PubMed  Google Scholar 

  12. Whyte MP, Obrecht SE, Finnegan PM, Jones JL, Podgornik MN, McAlister WH, Mumm S (2002) Osteoprotegerin deficiency and juvenile Paget disease. N Engl J Med 347:175–184

    Article  CAS  PubMed  Google Scholar 

  13. Cundy T, Hegde M, Naot D, Chong B, King A, Wallace R, Mulley J, Love DR, Seidel J, Fawkner M, Banovic T, Callon KE, Grey AB, Reid IR, Middleton-Hardie CA, Cornish J (2002) A mutation in the gene TNFRSF11B encoding osteoprotegerin causes an idiopathic hyperphosphatasia phenotype. Hum Mol Genet 11:2119–2127

    Article  CAS  PubMed  Google Scholar 

  14. Cundy T, Wheadon L, King A (2004) Treatment of idiopathic hyperphosphatasia with intensive bisphosphonate therapy. J Bone Miner Res 19:703–711

    Article  PubMed  Google Scholar 

  15. Antoniades K, Karakasis D, Kapetanos G, Lasaridis N, Tzarou V (1993) Chronic idiopathic hyperphosphatasemia. Case report. Oral Surg Oral Med Oral Pathol 76:200–204

    Article  CAS  PubMed  Google Scholar 

  16. Golob DS, McAlister WH, Mills BG, Fedde KN, Reinus WR, Teitelbaum SL, Beeki S, Whyte MP (1996) Juvenile Paget disease: life-long features of a mildly affected young woman. J Bone Miner Res 11:132–142

    Article  CAS  PubMed  Google Scholar 

  17. Whyte MP, Singhellakis PN, Petersen MB, Davies M, Totty WG, Mumm S (2007) Juvenile Paget disease: the second reported, oldest patient is homozygous for the TNFRSF11B “Balkan” mutation (966_969delTGACinsCTT), which elevates circulating immunoreactive osteoprotegerin levels. J Bone Miner Res 22:938–946

    Article  CAS  PubMed  Google Scholar 

  18. Tau C, Mautalen C, Casco C, Alvarez V, Rubinstein M (2004) Chronic idiopathic hyperphosphatasia: normalization of bone turnover with cyclical intravenous pamidronate therapy. Bone 35:210–216

    Article  CAS  PubMed  Google Scholar 

  19. Mitsudo SM (1971) Chronic idiopathic hyperphosphatasia associated with pseudoxanthoma elasticum. J Bone Joint Surg Am 53:303–314

    CAS  PubMed  Google Scholar 

  20. Fretzin DF (1975) Pseudoxanthoma elasticum in hyperphosphatasia. Arch Dermatol 111:271–272

    Article  CAS  PubMed  Google Scholar 

  21. Amizuka N, Shimomura J, Li M, Seki Y, Oda K, Henderson JE, Mizuno A, Ozawa H, Maeda T (2003) Defective bone remodelling in osteoprotegerin-deficient mice. J Electron Microsc 52:503–513

    Article  CAS  Google Scholar 

  22. Nakamura M, Udagawa N, Matsuura S, Mogi M, Nakamura H, Horiuchi H, Saito N, Hiraoka BY, Kobayashi Y, Takaoka K, Ozawa H, Miyazawa H, Takahashi N (2003) Osteoprotegerin regulates bone formation through a coupling mechanism with bone resorption. Endocrinology 144:5441–5446

    Article  CAS  PubMed  Google Scholar 

  23. Kanzaki S, Ito M, Takada Y, Ogawa K, Matsuo K (2006) Resorption of auditory ossicles and hearing loss in mice lacking osteoprotegerin. Bone 39:414–419

    Article  CAS  PubMed  Google Scholar 

  24. Zehnder AF, Kristiansen AG, Adams JC, Kujawa SG, Merchant SN, McKenna MJ (2006) Osteoprotegrin knockout mice demonstrate abnormal remodeling of the otic capsule and progressive hearing loss. Laryngoscope 116:201–206

    Article  CAS  PubMed  Google Scholar 

  25. Kimura M, Miyazawa K, Tabuchi M, Maeda H, Kameyama Y, Goto S (2008) Bisphosphonate treatment increases the size of the mandibular condyle and normalizes growth of the mandibular ramus in osteoprotegerin-deficient mice. Calcif Tissue Int 82:137–147

    Article  CAS  PubMed  Google Scholar 

  26. Komori T (2005) Regulation of skeletal development by the Runx family of transcription factors. J Cell Biochem 95:445–453

    Article  CAS  PubMed  Google Scholar 

  27. Watanabe T, Okafuji N, Nakano K, Shimizu T, Muraoka R, Kurihara S, Yamada K, Kawakami T (2007) Periodontal tissue reaction to mechanical stress in mice. J Hard Tissue Biol 16:71–74

    Article  Google Scholar 

  28. Watanabe T, Nakano N, Muraoka R, Shimizu T, Okafuji N, Kurihara S, Yamada K, Kawakami T (2008) Role of Msx2 as a promoting factor for Runx2 at the periodontal tension sides elicited by mechanical stress. Eur J Med Res 13:425–431

    CAS  PubMed  Google Scholar 

  29. Tabuchi M, Miyazawa K, Kimura M, Maeda H, Kawai T, Kameyama Y, Goto S (2005) Enhancement of crude morphogenetic protein-induced new bone formation and normalization of endochondral ossification by bisphosphonate treatment in osteoprotegerin-deficient mice. Calcif Tissue Int 77:239–249

    Article  CAS  PubMed  Google Scholar 

  30. Sprogar S, Vaupotic T, Cör A, Drevensek M, Drevensek G (2008) The endothelin system mediates bone modeling in the late stage of orthodontic tooth movement in rats. Bone 43:740–747

    Article  CAS  PubMed  Google Scholar 

  31. Wu LC, D’Amelio F, Fox RA, Polyakov I, Daunton NG (1997) Light microscopic image analysis system to quantify immunoreactive terminal area apposed to nerve cells. J Neurosci Methods 74:89–96

    Article  CAS  PubMed  Google Scholar 

  32. Yoshimatsu M, Uehara M, Yoshida N (2008) Expression of heat shock protein 47 in the periodontal ligament during orthodontic tooth movement. Arch Oral Biol 53:890–895

    Article  CAS  PubMed  Google Scholar 

  33. Kimmel DB, Jee WSS (1983) Measurements of area, perimeter, and distance: details of data collection in bone histomorphometry. In: Recker RR (ed) Bone histomorphometry. Techniques and interpretation. CRC Press, Boca Raton, pp 89–108

    Google Scholar 

  34. Yamashiro T, Takano-Yamamoto T (2001) Influences of ovariectomy on experimental tooth movement in the rat. J Dent Res 80:1858–1861

    Article  CAS  PubMed  Google Scholar 

  35. Verna C, Dalstra M, Melsen B (2000) The rate and the type of orthodontic tooth movement is influenced by bone turnover in a rat model. Eur J Orthod 22:343–352

    Article  CAS  PubMed  Google Scholar 

  36. Freisch H (1998) Bisphosphonates: mechanisms of action. Endocr Rev 19:80–100

    Article  Google Scholar 

  37. Im GI, Qureshi SA, Kenney J, Rubash HE, Shanbhag AS (2004) Osteoblast proliferation and maturation by bisphosphonates. Biomaterials 25:4105–4115

    Article  CAS  PubMed  Google Scholar 

  38. Miyazono K, Hellman U, Wenstedt C, Helden C-H (1988) Latent high molecular weight complex of transforming growth factor β1. J Biol Chem 263:6407–6415

    CAS  PubMed  Google Scholar 

  39. Hosoi T, Asuka T, Motto M, Tomita T, Shiraki M, Inoue S, Ouchi Y, Orimo H (1996) Immunolocalization of transforming growth factor-β in the bone tissue. Calcif Tissue Int 59:305–306

    Article  CAS  PubMed  Google Scholar 

  40. Matsunobu T, Torigoe K, Ishikawa M, de Vega S, Kulkarni AB, Iwamoto Y, Yamada Y (2009) Critical roles of the TGF-beta type I receptor ALK5 in perichondrial formation and function, cartilage integrity, and osteoblast differentiation during growth plate development. Dev Biol 332:325–338

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Takeyasu Maeda and Dr. Minqi Li of Niigata University for instructing us in the method of elastic insertion. This study was partially supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture of Japan (21592618).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satsuki Shoji.

Additional information

The authors have stated that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shoji, S., Tabuchi, M., Miyazawa, K. et al. Bisphosphonate Inhibits Bone Turnover in OPG−/− Mice Via a Depressive Effect on Both Osteoclasts and Osteoblasts. Calcif Tissue Int 87, 181–192 (2010). https://doi.org/10.1007/s00223-010-9384-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-010-9384-x

Keywords

Navigation