Calcified Tissue International

, Volume 87, Issue 4, pp 285–297 | Cite as

Cannabinoids and Bone: Friend or Foe?

Review

Abstract

The endocannabinoid system is recognized to play an important role in regulating a variety of physiological processes, including appetite control and energy balance, pain perception, and immune responses. The endocannabinoid system has also recently been implicated in the regulation of bone metabolism. Endogenously produced cannabinoids are hydrophobic molecules derived from hydrolysis of membrane phospholipids. These substances, along with plant-derived and synthetic cannabinoids, interact with the type 1 (CB1) and 2 (CB2) cannabinoid receptors and the GPR55 receptor to regulate cellular function through a variety of signaling pathways. Endocannabinoids are produced in bone, but the mechanisms that regulate their production are unclear. Skeletal phenotyping of mice with targeted inactivation of cannabinoid receptors and pharmacological studies have shown that cannabinoids play a key role in the regulation of bone metabolism. Mice with CB1 deficiency have high peak bone mass as a result of an osteoclast defect but develop age-related osteoporosis as a result of impaired bone formation and accumulation of bone marrow fat. Mice with CB2 deficiency have relatively normal peak bone mass but develop age-related osteoporosis as a result of increased bone turnover with uncoupling of bone resorption from bone formation. Mice with GPR55 deficiency have increased bone mass as a result of a defect in the resorptive activity of osteoclasts, but bone formation is unaffected. Cannabinoids are also produced within synovial tissues, and preclinical studies have shown that cannabinoid receptor ligands are effective in the treatment of inflammatory arthritis. These data indicate that cannabinoid receptors and the enzymes responsible for ligand synthesis and breakdown play important roles in bone remodeling and in the pathogenesis of joint disease.

Keywords

Anabolic agents Adipocytes Osteoporosis: Animal models Osteoclasts 

References

  1. 1.
    Simon GM, Cravatt BF (2006) Endocannabinoid biosynthesis proceeding through glycerophospho-N-acyl ethanolamine and a role for alpha/beta-hydrolase 4 in this pathway. J Biol Chem 281:26465–26472CrossRefPubMedGoogle Scholar
  2. 2.
    Di Marzo V, De Petrocellis L, Sepe N, Buono A (1996) Biosynthesis of anandamide and related acylethanolamides in mouse J774 macrophages and N18 neuroblastoma cells. Biochem J 316:977–984PubMedGoogle Scholar
  3. 3.
    Maejima T, Hashimoto K, Yoshida T, Aiba A, Kano M (2001) Presynaptic inhibition caused by retrograde signal from metabotropic glutamate to cannabinoid receptors. Neuron 31:463–475CrossRefPubMedGoogle Scholar
  4. 4.
    Maejima T, Ohno-Shosaku T, Kano M (2001) Endogenous cannabinoid as a retrograde messenger from depolarized postsynaptic neurons to presynaptic terminals. Neurosci Res 40:205–210CrossRefPubMedGoogle Scholar
  5. 5.
    Hermann A, Kaczocha M, Deutsch DG (2006) 2-Arachidonoylglycerol (2-AG) membrane transport: history and outlook. AAPS J 8:E409–E412PubMedGoogle Scholar
  6. 6.
    Dinh TP, Freund TF, Piomelli D (2002) A role for monoglyceride lipase in 2-arachidonoylglycerol inactivation. Chem Phys Lipids 121:149–158CrossRefPubMedGoogle Scholar
  7. 7.
    Cravatt BF, Demarest K, Patricelli MP, Bracey MH, Giang DK, Martin BR, Lichtman AH (2001) Supersensitivity to anandamide and enhanced endogenous cannabinoid signaling in mice lacking fatty acid amide hydrolase. Proc Natl Acad Sci USA 98:9371–9376CrossRefPubMedGoogle Scholar
  8. 8.
    Basavarajappa BS (2007) Critical enzymes involved in endocannabinoid metabolism. Protein Pept Lett 14:237–246CrossRefPubMedGoogle Scholar
  9. 9.
    Matias I, Bisogno T, Di MV (2006) Endogenous cannabinoids in the brain and peripheral tissues: regulation of their levels and control of food intake. Int J Obes (Lond) 30(suppl 1):S7–S12Google Scholar
  10. 10.
    Tam J, Trembovler V, Di MV, Petrosino S, Leo G, Alexandrovich A, Regev E, Casap N, Shteyer A, Ledent C, Karsak M, Zimmer A, Mechoulam R, Yirmiya R, Shohami E, Bab I (2008) The cannabinoid CB1 receptor regulates bone formation by modulating adrenergic signaling. FASEB J 22:285–294Google Scholar
  11. 11.
    Richardson D, Pearson RG, Kurian N, Latif ML, Garle MJ, Barrett DA, Kendall DA, Scammell BE, Reeve AJ, Chapman V (2008) Characterisation of the cannabinoid receptor system in synovial tissue and fluid in patients with osteoarthritis and rheumatoid arthritis. Arthritis Res Ther 10:R43CrossRefPubMedGoogle Scholar
  12. 12.
    Mechoulam R (2005) Plant cannabinoids: a neglected pharmacological treasure trove. Br J Pharmacol 146:913–915CrossRefPubMedGoogle Scholar
  13. 13.
    Pertwee RG, Ross RA (2002) Cannabinoid receptors and their ligands. Prostaglandins Leukot Essent Fatty Acids 66:101–121CrossRefPubMedGoogle Scholar
  14. 14.
    Ryberg E, Larsson N, Sjogren S, Hjorth S, Hermansson NO, Leonova J, Elebring T, Nilsson K, Drmota T, Greasley PJ (2007) The orphan receptor GPR55 is a novel cannabinoid receptor. Br J Pharmacol 152:1092–1101CrossRefPubMedGoogle Scholar
  15. 15.
    Pertwee RG (2007) GPR55: a new member of the cannabinoid receptor clan? Br J Pharmacol 152:984–986CrossRefPubMedGoogle Scholar
  16. 16.
    Ross RA (2009) The enigmatic pharmacology of GPR55. Trends Pharmacol Sci 30:156–163CrossRefPubMedGoogle Scholar
  17. 17.
    Lauckner JE, Jensen JB, Chen HY, Lu HC, Hille B, Mackie K (2008) GPR55 is a cannabinoid receptor that increases intracellular calcium and inhibits M current. Proc Natl Acad Sci USA 105:2699–2704CrossRefPubMedGoogle Scholar
  18. 18.
    Kapur A, Zhao P, Sharir H, Bai Y, Caron MG, Barak LS, Abood ME (2009) Atypical responsiveness of the orphan receptor GPR55 to cannabinoid ligands. J Biol Chem 284:29817–29827CrossRefPubMedGoogle Scholar
  19. 19.
    Matsuda LA, Lolait SJ, Brownstein MJ, Young AC, Bonner TI (1990) Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 346:561–564CrossRefPubMedGoogle Scholar
  20. 20.
    Galiegue S, Mary S, Marchand J, Dussossoy D, Carriere D, Carayon P, Bouaboula M, Shire D, Le Fur G, Casellas P (1995) Expression of central and peripheral cannabinoid receptors in human immune tissues and leukocyte subpopulations. Eur J Biochem 232:54–61CrossRefPubMedGoogle Scholar
  21. 21.
    Tam J, Ofek O, Fride E, Ledent C, Gabet Y, Muller R, Zimmer A, Mackie K, Mechoulam R, Shohami E, Bab I (2006) Involvement of neuronal cannabinoid receptor, CB1, in regulation of bone mass and bone remodeling. Mol Pharmacol 70:786–792CrossRefPubMedGoogle Scholar
  22. 22.
    Idris AI, Sophocleous A, Landao-Bassonga E, Canals M, Milligan G, Baker D, van’t Hof RJ, Ralston SH (2009) Cannabinoid receptor type 1 protects against age-related osteoporosis by regulating osteoblast and adipocyte differentiation in marrow stromal cells. Cell Metab 10:139–147Google Scholar
  23. 23.
    Munro S, Thomas KL, bu-Shaar M (1993) Molecular characterization of a peripheral receptor for cannabinoids. Nature 365:61–65CrossRefPubMedGoogle Scholar
  24. 24.
    Idris AI, Van ‘t Hof RJ, Greig IR, Ridge SA, Baker D, Ross RA, Ralston SH (2005) Regulation of bone mass, bone loss and osteoclast activity by cannabinoid receptors. Nat Med 11:774–779Google Scholar
  25. 25.
    Ofek O, Karsak M, Leclerc N, Fogel M, Frenkel B, Wright K, Tam J, Attar-Namdar M, Kram V, Shohami E, Mechoulam R, Zimmer A, Bab I (2006) Peripheral cannabinoid receptor, CB2, regulates bone mass. Proc Natl Acad Sci USA 103:696–701CrossRefPubMedGoogle Scholar
  26. 26.
    Whyte LS, Ryberg E, Sims NA, Ridge SA, Mackie K, Greasley PJ, Ross RA, Rogers MJ (2009) The putative cannabinoid receptor GPR55 affects osteoclast function in vitro and bone mass in vivo. Proc Natl Acad Sci USA 106:16511–16516CrossRefPubMedGoogle Scholar
  27. 27.
    van der Stelt M, Trevisani M, Vellani V, De PL, Schiano MA, Campi B, McNaughton P, Geppetti P, Di Marzo V (2005) Anandamide acts as an intracellular messenger amplifying Ca2+ influx via TRPV1 channels. EMBO J 24:3026–3037Google Scholar
  28. 28.
    Di Marzo V, De Petrocellis L, Fezza F, Ligresti A, Bisogno T (2002) Anandamide receptors. Prostaglandins Leukot Essent Fatty Acids 66:377–391CrossRefPubMedGoogle Scholar
  29. 29.
    van der Eerden BC, Hoenderop JG, de Vries TJ, Schoenmaker T, Buurman CJ, Uitterlinden AG, Pols HA, Bindels RJ, van Leeuwen JP (2005) The epithelial Ca2+ channel TRPV5 is essential for proper osteoclastic bone resorption. Proc Natl Acad Sci USA 102:17507–17512CrossRefPubMedGoogle Scholar
  30. 30.
    Rossi F, Siniscalco D, Luongo L, De PL, Bellini G, Petrosino S, Torella M, Santoro C, Nobili B, Perrotta S, Di MV, Maione S (2009) The endovanilloid/endocannabinoid system in human osteoclasts: possible involvement in bone formation and resorption. Bone 44:476–484Google Scholar
  31. 31.
    Demuth DG, Molleman A (2006) Cannabinoid signalling. Life Sci 78:549–563CrossRefPubMedGoogle Scholar
  32. 32.
    Derkinderen P, Toutant M, Burgaya F, Le BM, Siciliano JC, de Franciscis V, Gelman M, Girault JA (1996) Regulation of a neuronal form of focal adhesion kinase by anandamide. Science 273:1719–1722Google Scholar
  33. 33.
    Karanian DA, Brown QB, Makriyannis A, Bahr BA (2005) Blocking cannabinoid activation of FAK and ERK1/2 compromises synaptic integrity in hippocampus. Eur J Pharmacol 508:47–56CrossRefPubMedGoogle Scholar
  34. 34.
    Guzman M, Galve-Roperh I, Sanchez C (2001) Ceramide: a new second messenger of cannabinoid action. Trends Pharmacol Sci 22:19–22CrossRefPubMedGoogle Scholar
  35. 35.
    del Pulgar TG, Velasco G, Guzman M (2000) The CB1 cannabinoid receptor is coupled to the activation of protein kinase B/Akt. Biochem J 347:369–373CrossRefGoogle Scholar
  36. 36.
    Ridge SA, Ford L, Cameron GA, Ross RA, Rogers MJ (2007) Endocannabinoids are produced by bone cells and stimulate bone resorption in vitro. Bone 40(suppl 1):S120Google Scholar
  37. 37.
    Idris AI, Sophocleous A, Landao-Bassonga E, van’t Hof RJ, Ralston SH (2008) Regulation of bone mass, osteoclast function and ovariectomy-induced bone loss by the type 2 cannabinoid receptor. Endocrinology 149:5619–5626CrossRefPubMedGoogle Scholar
  38. 38.
    Geng D, Xu Y, Yang H, Wang J, Zhu X, Zhu G, Wang X (2010) Protection against titanium particle induced osteolysis by cannabinoid receptor 2 selective antagonist. Biomaterials 31:1996–2000CrossRefPubMedGoogle Scholar
  39. 39.
    George KL, Saltman LH, Stein GS, Lian JB, Zurier RB (2008) Ajulemic acid, a nonpsychoactive cannabinoid acid, suppresses osteoclastogenesis in mononuclear precursor cells and induces apoptosis in mature osteoclast-like cells. J Cell Physiol 214:714–720CrossRefPubMedGoogle Scholar
  40. 40.
    Wan Y, Chong LW, Evans RM (2007) PPAR-gamma regulates osteoclastogenesis in mice. Nat Med 13:1496–1503CrossRefPubMedGoogle Scholar
  41. 41.
    Scutt A, Williamson EM (2007) Cannabinoids stimulate fibroblastic colony formation by bone marrow cells indirectly via CB2 receptors. Calcif Tissue Int 80:50–59CrossRefPubMedGoogle Scholar
  42. 42.
    Gimble JM, Zvonic S, Floyd ZE, Kassem M, Nuttall ME (2006) Playing with bone and fat. J Cell Biochem 98:251–266CrossRefPubMedGoogle Scholar
  43. 43.
    Pertwee RG (2006) Cannabinoid pharmacology: the first 66 years. Br J Pharmacol 147(suppl 1):S163–S171CrossRefPubMedGoogle Scholar
  44. 44.
    Malfait AM, Gallily R, Sumariwalla PF, Malik AS, Andreakos E, Mechoulam R, Feldmann M (2000) The nonpsychoactive cannabis constituent cannabidiol is an oral anti-arthritic therapeutic in murine collagen-induced arthritis. Proc Natl Acad Sci USA 97:9561–9566CrossRefPubMedGoogle Scholar
  45. 45.
    Sumariwalla PF, Gallily R, Tchilibon S, Fride E, Mechoulam R, Feldmann M (2004) A novel synthetic, nonpsychoactive cannabinoid acid (HU-320) with antiinflammatory properties in murine collagen-induced arthritis. Arthritis Rheum 50:985–998CrossRefPubMedGoogle Scholar
  46. 46.
    Lunn CA, Fine J, Rojas-Triana A, Jackson JV, Lavey B, Kozlowski JA, Hipkin RW, Lundell DJ, Bober L (2007) Cannabinoid CB(2)-selective inverse agonist protects against antigen-induced bone loss. Immunopharmacol Immunotoxicol 29:387–401CrossRefPubMedGoogle Scholar
  47. 47.
    Karsak M, Cohen-Solal M, Freudenberg J, Ostertag A, Morieux C, Kornak U, Essig J, Erxlebe E, Bab I, Kubisch C, de Vernejoul MC, Zimmer A (2005) Cannabinoid receptor type 2 gene is associated with human osteoporosis. Hum Mol Genet 14:3389–3396CrossRefPubMedGoogle Scholar
  48. 48.
    Yamada Y, Ando F, Shimokata H (2007) Association of candidate gene polymorphisms with bone mineral density in community-dwelling Japanese women and men. Int J Mol Med 19:791–801PubMedGoogle Scholar
  49. 49.
    Karsak M, Malkin I, Toliat MR, Kubisch C, Nurnberg P, Zimmer A, Livshits G (2009) The cannabinoid receptor type 2 (CNR2) gene is associated with hand bone strength phenotypes in an ethnically homogeneous family sample. Hum Genet 126:629–636CrossRefPubMedGoogle Scholar
  50. 50.
    Kung AW, Xiao SM, Cherny S, Li GH, Gao Y, Tso G, Lau KS, Luk KD, Liu JM, Cui B, Zhang MJ, Zhang ZL, He JW, Yue H, Xia WB, Luo LM, He SL, Kiel DP, Karasik D, Hsu YH, Cupples LA, Demissie S, Styrkarsdottir U, Halldorsson BV, Sigurdsson G, Thorsteinsdottir U, Stefansson K, Richards JB, Zhai G, Soranzo N, Valdes A, Spector TD, Sham PC (2010) Association of JAG1 with bone mineral density and osteoporotic fractures: a genome-wide association study and follow-up replication studies. Am J Hum Genet 86:229–239CrossRefPubMedGoogle Scholar
  51. 51.
    Styrkarsdottir U, Halldorsson BV, Gretarsdottir S, Gudbjartsson DF, Walters GB, Ingvarsson T, Jonsdottir T, Saemundsdottir J, Snorradottir S, Center JR, Nguyen TV, Alexandersen P, Gulcher JR, Eisman JA, Christiansen C, Sigurdsson G, Kong A, Thorsteinsdottir U, Stefansson K (2009) New sequence variants associated with bone mineral density. Nat Genet 41:15–17CrossRefPubMedGoogle Scholar
  52. 52.
    Richards JB, Rivadeneira F, Inouye M, Pastinen TM, Soranzo N, Wilson SG, Andrew T, Falchi M, Gwilliam R, Ahmadi KR, Valdes AM, Arp P, Whittaker P, Verlaan DJ, Jhamai M, Kumanduri V, Moorhouse M, van Meurs JB, Hofman A, Pols HA, Hart D, Zhai G, Kato BS, Mullin BH, Zhang F, Deloukas P, Uitterlinden AG, Spector TD (2008) Bone mineral density, osteoporosis, and osteoporotic fractures: a genome-wide association study. Lancet 371:1505–1512CrossRefPubMedGoogle Scholar
  53. 53.
    Richards JB, Kavvoura FK, Rivadeneira F, Styrkarsdottir U, Estrada K, Halldorsson BV, Hsu YH, Zillikens MC, Wilson SG, Mullin BH, Amin N, Aulchenko YS, Cupples LA, Deloukas P, Demissie S, Hofman A, Kong A, Karasik D, van Meurs JB, Oostra BA, Pols HA, Sigurdsson G, Thorsteinsdottir U, Soranzo N, Williams FM, Zhou Y, Ralston SH, Thorleifsson G, van Duijn CM, Kiel DP, Stefansson K, Uitterlinden AG, Ioannidis JP, Spector TD (2009) Collaborative meta-analysis: associations of 150 candidate genes with osteoporosis and osteoporotic fracture. Ann Intern Med 151:528–537PubMedGoogle Scholar
  54. 54.
    Guzman M (2003) Cannabinoids: potential anticancer agents. Nat Rev Cancer 3:745–755CrossRefPubMedGoogle Scholar
  55. 55.
    De PL, Melck D, Palmisano A, Bisogno T, Laezza C, Bifulco M, Di M, V (1998) The endogenous cannabinoid anandamide inhibits human breast cancer cell proliferation. Proc Natl Acad Sci USA 95:8375–8380Google Scholar
  56. 56.
    Olea-Herrero N, Vara D, Malagarie-Cazenave S, az-Laviada I (2009) Inhibition of human tumour prostate PC-3 cell growth by cannabinoids R(+)-methanandamide and JWH-015: involvement of CB2. Br J Cancer 101:940–950CrossRefPubMedGoogle Scholar
  57. 57.
    Xian XS, Park H, Cho YK, Lee IS, Kim SW, Choi MG, Chung IS, Han KH, Park JM (2010) Effect of a synthetic cannabinoid agonist on the proliferation and invasion of gastric cancer cells. J Cell Biochem 110:321–332PubMedGoogle Scholar
  58. 58.
    Caffarel MM, Moreno-Bueno G, Cerutti C, Palacios J, Guzman M, Mechta-Grigoriou F, Sanchez C (2008) JunD is involved in the antiproliferative effect of Delta(9)-tetrahydrocannabinol on human breast cancer cells. Oncogene 27:5033–5044CrossRefPubMedGoogle Scholar
  59. 59.
    Ramer R, Merkord J, Rohde H, Hinz B (2010) Cannabidiol inhibits cancer cell invasion via upregulation of tissue inhibitor of matrix metalloproteinases-1. Biochem Pharmacol 79:955–966CrossRefPubMedGoogle Scholar
  60. 60.
    Sanchez C, de Ceballos ML, del Gomez PT, Rueda D, Corbacho C, Velasco G, Galve-Roperh I, Huffman JW, Cajal S, Guzman M (2001) Inhibition of glioma growth in vivo by selective activation of the CB(2) cannabinoid receptor. Cancer Res 61:5784–5789PubMedGoogle Scholar
  61. 61.
    Gustafsson K, Wang X, Severa D, Eriksson M, Kimby E, Merup M, Christensson B, Flygare J, Sander B (2008) Expression of cannabinoid receptors type 1 and type 2 in non-Hodgkin lymphoma: growth inhibition by receptor activation. Int J Cancer 123:1025–1033CrossRefPubMedGoogle Scholar
  62. 62.
    Preet A, Ganju RK, Groopman JE (2008) Delta9-Tetrahydrocannabinol inhibits epithelial growth factor-induced lung cancer cell migration in vitro as well as its growth and metastasis in vivo. Oncogene 27:339–346CrossRefPubMedGoogle Scholar
  63. 63.
    Qamri Z, Preet A, Nasser MW, Bass CE, Leone G, Barsky SH, Ganju RK (2009) Synthetic cannabinoid receptor agonists inhibit tumor growth and metastasis of breast cancer. Mol Cancer Ther 8:3117–3129CrossRefPubMedGoogle Scholar
  64. 64.
    Rice AS, Farquhar-Smith WP, Nagy I (2002) Endocannabinoids and pain: spinal and peripheral analgesia in inflammation and neuropathy. Prostaglandins Leukot Essent Fatty Acids 66:243–256CrossRefPubMedGoogle Scholar
  65. 65.
    Curto-Reyes V, Llames S, Hidalgo A, Menendez L, Baamonde A (2010) Spinal and peripheral analgesic effects of the CB cannabinoid receptor agonist AM1241 in two models of bone cancer-induced pain. Br J Pharmacol 160:561–573CrossRefPubMedGoogle Scholar
  66. 66.
    Lozano-Ondoua AN, Wright C, Vardanyan A, King T, Largent-Milnes TM, Nelson M, Jimenez-Andrade JM, Mantyh PW, Vanderah TW (2010) A cannabinoid 2 receptor agonist attenuates bone cancer-induced pain and bone loss. Life Sci 86:646–653CrossRefPubMedGoogle Scholar
  67. 67.
    Pertwee RG (2009) Emerging strategies for exploiting cannabinoid receptor agonists as medicines. Br J Pharmacol 156:397–411CrossRefPubMedGoogle Scholar
  68. 68.
    Bingham B, Jones PG, Uveges AJ, Kotnis S, Lu P, Smith VA, Sun SC, Resnick L, Chlenov M, He Y, Strassle BW, Cummons TA, Piesla MJ, Harrison JE, Whiteside GT, Kennedy JD (2007) Species-specific in vitro pharmacological effects of the cannabinoid receptor 2 (CB2) selective ligand AM1241 and its resolved enantiomers. Br J Pharmacol 151:1061–1070CrossRefPubMedGoogle Scholar
  69. 69.
    Yao BB, Mukherjee S, Fan Y, Garrison TR, Daza AV, Grayson GK, Hooker BA, Dart MJ, Sullivan JP, Meyer MD (2006) in vitro pharmacological characterization of AM1241: a protean agonist at the cannabinoid CB2 receptor? Br J Pharmacol 149:145–154CrossRefPubMedGoogle Scholar
  70. 70.
    Maresz K, Pryce G, Ponomarev ED, Marsicano G, Croxford JL, Shriver LP, Ledent C, Cheng X, Carrier EJ, Mann MK, Giovannoni G, Pertwee RG, Yamamura T, Buckley NE, Hillard CJ, Lutz B, Baker D, Dittel BN (2007) Direct suppression of CNS autoimmune inflammation via the cannabinoid receptor CB1 on neurons and CB2 on autoreactive T cells. Nat Med 13:492–497CrossRefPubMedGoogle Scholar
  71. 71.
    Xu H, Cheng CL, Chen M, Manivannan A, Cabay L, Pertwee RG, Coutts A, Forrester JV (2007) Anti-inflammatory property of the cannabinoid receptor-2-selective agonist JWH-133 in a rodent model of autoimmune uveoretinitis. J Leukoc Biol 82:532–541CrossRefPubMedGoogle Scholar
  72. 72.
    Massa F, Marsicano G, Hermann H, Cannich A, Monory K, Cravatt BF, Ferri GL, Sibaev A, Storr M, Lutz B (2004) The endogenous cannabinoid system protects against colonic inflammation. J Clin Invest 113:1202–1209PubMedGoogle Scholar
  73. 73.
    Robertson JR, Miller P, Anderson R (1996) Cannabis use in the community. Br J Gen Pract 46:671–674PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Rheumatic Diseases Unit, Molecular Medicine Centre, Western General HospitalUniversity of EdinburghEdinburghScotland, UK

Personalised recommendations