Skip to main content

Advertisement

Log in

Is Nitric Oxide a Mediator of the Effects of Low-Intensity Electrical Stimulation on Bone in Ovariectomized Rats?

  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Low-intensity electrical stimulation (LIES) may counteract the effects of ovariectomy (OVX) on nitric oxide synthase (NOS) expression, osteocyte viability, bone structure, and microarchitecture in rats (Lirani-Galvão et al., Calcif Tissue Int 84:502–509, 2009). The aim of the present study was to investigate if these effects of LIES could be mediated by NO. We analyzed the effects of NO blockage (by l-NAME) in the response to LIES on osteocyte viability, bone structure, and microarchitecture in OVX rats. Sixty rats (200–220 g) were divided into six groups: sham, sham-l-NAME (6 mg/kg/day), OVX, OVX-l-NAME, OVX-LIES, and OVX-LIES-l-NAME. After 12 weeks, rats were killed and tibiae collected for histomorphometric analysis and immunohistochemical detection of endothelial NOS (eNOS), inducible NOS (iNOS), and osteocyte apoptosis (caspase-3 and TUNEL). In the presence of l-NAME, LIES did not counteract the OVX-induced effects on bone volume and trabecular number (as on OVX-LIES). l-NAME blocked the stimulatory effects of LIES on iNOS and eNOS expression of OVX rats. Both l-NAME and LIES decreased osteocyte apoptosis. Our results showed that in OVX rats l-NAME partially blocks the effects of LIES on bone structure, turnover, and expression of iNOS and eNOS, suggesting that NO may be a mediator of some positive effects of LIES on bone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Burger EH, Klein-Nulend J (1999) Responses of bone cells to biomechanical forces in vitro. Adv Dent Res 13:93–98

    Article  CAS  PubMed  Google Scholar 

  2. Ma YL, Dai RC, Sheng ZF, Jin Y, Zhang YH, Fang LN, Fan HJ, Liao EY (2008) Quantitative associations between osteocyte density and biomechanics, microcrack and microstructure in OVX rats vertebral trabeculae. J Biomech 41:1324–1332

    Article  PubMed  Google Scholar 

  3. Moncada S, Palmer RM, Higgs EA (1991) Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 43:109–142

    CAS  PubMed  Google Scholar 

  4. Koyama A, Otsuka E, Inoue A, Hirose S, Hagiwara H (2000) Nitric oxide accelerates the ascorbic acid-induced osteoblastic differentiation of mouse stromal ST2 cells by stimulating the production of prostaglandin E2. Eur J Pharmacol 391:225–231

    Article  CAS  PubMed  Google Scholar 

  5. Zheng H, Yu X, Collin-Osdoby P, Osdoby P (2006) RANKL stimulates inducible nitric-oxide synthase expression and nitric oxide production in developing osteoclasts. An autocrine negative feedback mechanism triggered by RANKL-induced interferon-beta via NF-kappaB that restrains osteoclastogenesis and bone resorption. J Biol Chem 281:15809–15820

    Article  CAS  PubMed  Google Scholar 

  6. Zaman G, Pitsillides AA, Rawlinson SC et al (1999) Mechanical strain stimulates nitric oxide production by rapid activation of endothelial nitric oxide synthase in osteocytes. J Bone Miner Res 14:1123–1131

    Article  CAS  PubMed  Google Scholar 

  7. Watanuki M, Sakai A, Sakata T, Tsurukami H, Miwa M, Uchida Y, Watanabe K, Ikeda K, Nakamura T (2002) Role of inducible nitric oxide synthase in skeletal adaptation to acute increases in mechanical loading. J Bone Miner Res 17:1015–1025

    Article  CAS  PubMed  Google Scholar 

  8. Wimalawansa SJ, De Marco G, Gangula P, Yallampalli C (1996) Nitric oxide donor alleviates ovariectomy-induced bone loss. Bone 18:301–304

    Article  CAS  PubMed  Google Scholar 

  9. Cuzzocrea S, Mazzon E, Dugo L, Genovese T, Di Paola R, Ruggeri Z, Vegeto E, Caputi AP, Van De Loo FA, Puzzolo D, Maggi A (2003) Inducible nitric oxide synthase mediates bone loss in ovariectomized mice. Endocrinology 144:1098–1107

    Article  CAS  PubMed  Google Scholar 

  10. Klein-Nulend J, Semeins CM, Ajubi NE, Nijweide PJ, Burger EH (1995) Pulsating fluid flow increases nitric oxide (NO) synthesis by osteocytes but not periosteal fibroblasts—correlation with prostaglandin upregulation. Biochem Biophys Res Commun 217:640–648

    Article  CAS  PubMed  Google Scholar 

  11. Mullender MG, Dijcks SJ, Bacabac RG, Semeins CM, Van Loon JJ, Klein-Nulend J (2006) Release of nitric oxide, but not prostaglandin E2, by bone cells depends on fluid flow frequency. J Orthop Res 24:1170–1177

    Article  CAS  PubMed  Google Scholar 

  12. Tan SD, Bakker AD, Semeins CM, Kuijpers-Jagtman AM, Klein-Nulend J (2008) Inhibition of osteocyte apoptosis by fluid flow is mediated by nitric oxide. Biochem Biophys Res Commun 369:1150–1154

    Article  CAS  PubMed  Google Scholar 

  13. Bakker AD, Klein-Nulend J, Tanck E, Albers GH, Lips P, Burger EH (2005) Additive effects of estrogen and mechanical stress on nitric oxide and prostaglandin E2 production by bone cells from osteoporotic donors. Osteoporos Int 16:983–989

    Article  CAS  PubMed  Google Scholar 

  14. Hamed A, Kim P, Cho M (2006) Synthesis of nitric oxide in human osteoblasts in response to physiologic stimulation of electrotherapy. Ann Biomed Eng 34:1908–1916

    Article  PubMed  Google Scholar 

  15. Hukkanen M, Platts LA, Lawes T, Girgis SI, Konttinen YT, Goodship AE, MacIntyre I, Polak JM (2003) Effect of nitric oxide donor nitroglycerin on bone mineral density in a rat model of estrogen deficiency-induced osteopenia. Bone 32:142–149

    Article  CAS  PubMed  Google Scholar 

  16. Wimalawansa SJ (2007) Rationale for using nitric oxide donor therapy for prevention of bone loss and treatment of osteoporosis in humans. Ann N Y Acad Sci 1117:283–297

    Article  CAS  PubMed  Google Scholar 

  17. Lirani-Galvão APR, Bergamaschi CT, Silva OL, Lazaretti-Castro M (2006) Electrical field stimulation improves bone mineral density in ovariectomized rats. Braz J Med Biol Res 39:1501–1505

    PubMed  Google Scholar 

  18. Lirani-Galvão APR, Chavassieux P, Portero-Muzy N, Bergamaschi CT, Silva OL, Carvalho AB, Lazaretti-Castro M, Delmas PD (2009) Low intensity electrical stimulation counteracts the effects of ovariectomy on bone tissue of rats: effects on bone microarchitecture, viability of osteocytes and nitric oxide expression. Calcif Tissue Int 84:502–509

    Article  PubMed  Google Scholar 

  19. Giardino R, Fini M, Giavaresi G, Mongiorgi R, Gnudi S, Zati A (1993) Experimental surgical model in osteoporosis study. Boll Soc Ital Biol Sper 69:453–460

    CAS  PubMed  Google Scholar 

  20. Da Cunha V, Stefanon I, Mill JG (2004) Role of nitric oxide in mediating cardiovascular alterations accompanying heart failure in rats. Can J Physiol Pharmacol 82:372–379

    Article  CAS  PubMed  Google Scholar 

  21. Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR (1987) Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 2:595–610

    Article  CAS  PubMed  Google Scholar 

  22. Chavassieux P, Arlot M, Meunier P (2001) Clinical use of bone biopsy. In: Marcus R, Feldman D, Kelsey J (eds) Osteoporosis, vol 2, 2nd edn. Academic Press, San Diego, pp 501–509

    Google Scholar 

  23. Basso N, Heersche JN (2006) Effects of hind limb unloading and reloading on nitric oxide synthase expression and apoptosis of osteocytes and chondrocytes. Bone 39:807–814

    Article  CAS  PubMed  Google Scholar 

  24. Faleiro L, Kobayashi R, Fearnhead H, Lazebnik Y (1997) Multiple species of CPP32 and Mch2 are the major active caspases present in apoptotic cells. EMBO J 16:2271–2281

    Article  CAS  PubMed  Google Scholar 

  25. Gavrieli Y, Sherman Y, Ben-Sasson SA (1992) Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 119:493–501

    Article  CAS  PubMed  Google Scholar 

  26. Follet H, Li J, Phipps RJ, Hui S, Condon K, Burr DB (2007) Risedronate and alendronate suppress osteocyte apoptosis following cyclic fatigue loading. Bone 40:1172–1177

    Article  CAS  PubMed  Google Scholar 

  27. Rahnert J, Fan X, Case N, Murphy TC, Grassi F, Sen B, Rubin J (2008) The role of nitric oxide in the mechanical repression of RANKL in bone stromal cells. Bone 43:48–54

    Article  CAS  PubMed  Google Scholar 

  28. Ralston SH, Ho LP, Helfrich MH, Grabowski PS, Johnston PW, Benjamin N (1995) Nitric oxide: a cytokine-induced regulator of bone resorption. J Bone Miner Res 10:1040–1049

    Article  CAS  PubMed  Google Scholar 

  29. Fan X, Roy E, Zhu L, Murphy TC, Ackert-Bicknell C, Hart CM, Rosen C, Nanes MS, Rubin J (2004) Nitric oxide regulates receptor activator of nuclear factor-kappaB ligand and osteoprotegerin expression in bone marrow stromal cells. Endocrinology 145:751–759

    Article  CAS  PubMed  Google Scholar 

  30. Tsukahara H, Miura M, Tsuchida S, Hata I, Hata K, Yamamoto K, Ishii Y, Muramatsu I, Sudo M (1996) Effect of nitric oxide synthase inhibitors on bone metabolism in growing rats. Am J Physiol Endocrinol Metab 270:E840–E845

    CAS  Google Scholar 

  31. Pennisi P, D’Alcamo MA, Leonetti C, Clementi A, Cutuli VM, Riccobene S, Parisi N, Fiore CE (2005) Supplementation of l-arginine prevents glucocorticoid-induced reduction of bone growth and bone turnover abnormalities in a growing rat model. J Bone Miner Metab 23:134–139

    Article  CAS  PubMed  Google Scholar 

  32. Turner CH, Owan I, Jacob DS, McClintock R, Peacock M (1997) Effects of nitric oxide synthase inhibitors on bone formation in rats. Bone 21:487–490

    Article  CAS  PubMed  Google Scholar 

  33. Okruhlicová L, Tribulová N, Bernátová I, Pechánová O (2000) Induction of angiogenesis in NO-deficient rat heart. Physiol Res 49:71–76

    PubMed  Google Scholar 

  34. Collin-Osdoby P, Rothe L, Bekker S, Anderson F, Osdoby P (2000) Decreased nitric oxide levels stimulate osteoclastogenesis and bone resorption both in vitro and in vivo on the chick chorioallantoic membrane in association with neoangiogenesis. J Bone Miner Res 15:474–488

    Article  CAS  PubMed  Google Scholar 

  35. Turner CH, Takano Y, Owan I, Murrell GA (1996) Nitric oxide inhibitor L-NAME suppresses mechanically induced bone formation in rats. Am J Physiol Endocrinol Metab 270:E634–E639

    CAS  Google Scholar 

  36. Diniz P, Soejima K, Ito G (2002) Nitric oxide mediates the effects of pulsed electromagnetic field stimulation on the osteoblast proliferation and differentiation. Nitric Oxide 7:18–23

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. R. Lirani-Galvão.

Additional information

The authors have stated that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lirani-Galvão, A.P.R., Lazaretti-Castro, M., Portero-Muzy, N. et al. Is Nitric Oxide a Mediator of the Effects of Low-Intensity Electrical Stimulation on Bone in Ovariectomized Rats?. Calcif Tissue Int 87, 52–59 (2010). https://doi.org/10.1007/s00223-010-9357-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-010-9357-0

Keywords

Navigation