Skip to main content

A Mineral-Rich Extract from the Red Marine Algae Lithothamnion calcareum Preserves Bone Structure and Function in Female Mice on a Western-Style Diet

Abstract

The purpose of this study was to determine whether a mineral-rich extract derived from the red marine algae Lithothamnion calcareum could be used as a dietary supplement for prevention of bone mineral loss. Sixty C57BL/6 mice were divided into three groups based on diet: the first group received a high-fat Western-style diet (HFWD), the second group was fed the same HFWD along with the mineral-rich extract included as a dietary supplement, and the third group was used as a control and was fed a low-fat rodent chow diet (AIN76A). Mice were maintained on the respective diets for 15 months. Then, long bones (femora and tibiae) from both males and females were analyzed by three-dimensional micro-computed tomography (micro-CT) and (bones from female mice) concomitantly assessed in bone strength studies. Tartrate-resistant acid phosphatase (TRAP), osteocalcin, and N-terminal peptide of type I procollagen (PINP) were assessed in plasma samples obtained from female mice at the time of sacrifice. To summarize, female mice on the HFWD had reduced bone mineralization and reduced bone strength relative to female mice on the low-fat chow diet. The bone defects in female mice on the HFWD were overcome in the presence of the mineral-rich supplement. In fact, female mice receiving the mineral-rich supplement in the HFWD had better bone structure/function than did female mice on the low-fat chow diet. Female mice on the mineral-supplemented HFWD had higher plasma levels of TRAP than mice of the other groups. There were no differences in the other two markers. Male mice showed little diet-specific differences by micro-CT.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Prentice A (2004) Diet, nutrition and the prevention of osteoporosis. Public Health Nutr 7:227–243

    Article  CAS  PubMed  Google Scholar 

  2. Iskrant AP (1968) The etiology of fractured hips in females. Am J Public Health 58:485–490

    Article  CAS  Google Scholar 

  3. De Laet CE, Van Hout BA, Burger H (1998) Hip fracture prediction in elderly men and women: validation in the Rotterdam study. J Bone Miner Res 13:1587–1593

    Article  PubMed  Google Scholar 

  4. Prentice A (1997) Is nutrition important in osteoporosis? Proc Nutr Soc 56:357–367

    Article  CAS  PubMed  Google Scholar 

  5. Zernicke RF, Salem GJ, Barnard RJ, Schramm E (1995) Long-term high-fat sucrose diet alters rat femoral neck and vertebral morphology, bone mineral content and mechanical properties. Bone 16:25–31

    Article  CAS  PubMed  Google Scholar 

  6. Atteh JO, Leeson S (1984) Effects of dietary saturated or unsaturated fatty acids and calcium levels on performance and mineral metabolism of broiler chicks. Poult Sci 63:2252–2260

    CAS  PubMed  Google Scholar 

  7. Li K-C, Zernicke RF, Barnard RJ, F-Y Li A (1990) Effects of a high fat-sucrose diet on cortical bone morphology and biomechanics. Calcif Tissue Int 47:308–313

    Article  CAS  PubMed  Google Scholar 

  8. Wohl GR, Locehrke L, Watkins BA, Zernicke RF (1998) Effects of high-fat diet on mature bone mineral content, structure and mechanical properties. Calcif Tissue Int 63:74–79

    Article  CAS  PubMed  Google Scholar 

  9. Parhami F, Tintut Y, Beamer WG, Gharavi N, Goodman W, Demer LL (2001) Atherogenic high-fat diet reduces bone mineralization in mice. J Bone Miner Res 16:182–188

    Article  CAS  PubMed  Google Scholar 

  10. Prentice A (2002) What are the dietary requirements for calcium and vitamin D? Calcif Tissue Int 70:83–88

    Article  CAS  PubMed  Google Scholar 

  11. Dibba B, Prentice A, Cecasay M, Stirling DM, Cole TJ, Poskitt EME (2000) Effect of calcium supplementation on bone mineral accretion in Gambian children accustomed to a low calcium diet. Am J Clin Nutr 71:544–549

    CAS  PubMed  Google Scholar 

  12. Peacock M, Liu G, Carey M (2000) Effect of a calcium or 25OHD vitamin D3 dietary supplementation on bone loss at the hip in men and women over the age of 60. Clin Endocrinol Metab 85:3011–3019

    Article  CAS  Google Scholar 

  13. Royal College of Physicians (1999) Osteoporosis. Clinical guidelines for prevention and treatment. Royal College of Physicians of London, London

    Google Scholar 

  14. Toba Y, Kajita Y, Masuyama R, Takada Y, Suzuki K, Aoe S (2000) Dietary magnesium supplementation affects bone metabolism and dynamic strength of bone on ovariectomized rats. J Nutr 130:216–220

    CAS  PubMed  Google Scholar 

  15. Rude RK, Gruber HE (2004) Magnesium deficiency and osteoporosis: animal and human observations [review]. J Nutr Biochem 15:710–716

    Article  CAS  PubMed  Google Scholar 

  16. Odabasi E, Turan M, Aydin A, Akay C, Kutlu M (2008) Magnesium, zinc, copper, manganese and selenium levels in postmenopausal women with osteoporosis: can magnesium play a key role in osteoporosis. Ann Acad Med Singapore 37:564–567

    PubMed  Google Scholar 

  17. Lowe MN, Fraser WD, Jackson J (2002) Is there potential therapeutic value of copper and zinc for osteoporosis? Proc Nutr Soc 61:181–185

    Article  CAS  PubMed  Google Scholar 

  18. Opsahl W, Zeronian H, Ellison M, Lewis D, Rucker RB, Riggins RS (1982) Role of copper in collagen cross-linking and its influence on selected mechanical properties of chick bone and tendon. J Nutr 112:708–716

    CAS  PubMed  Google Scholar 

  19. Strause LG, Hegenauer J, Saltman P, Cone R, Resnick D (1986) Effects of long-term dietary manganese and copper deficiency on rat skeleton. J Nutr 116:135–141

    CAS  PubMed  Google Scholar 

  20. Hyun TH, Barret-Connor J, Milne DB (2004) Zinc intakes and plasm concentrations in men with osteoporosis: the Rancho Bernardo Study. Am J Clin Nutr 80:715–721

    CAS  PubMed  Google Scholar 

  21. Chariot P, Bignani O (2003) Skeletal muscle disorders associated with selenium deficiency in humans. Muscle Nerve 27:662–668

    Article  CAS  PubMed  Google Scholar 

  22. Turan B, Can B, Delibasi E (2003) Selenium combined with vitamin E and vitamin C restores structural alterations of bones in heparin-induced osteoporosis. Clin Rheumatol 22:432–436

    Article  PubMed  Google Scholar 

  23. Stause I, Saltman P, Smith KT, Bracker M, Andon MD (1994) Spinal bone loss in post-menopausal women supplemented with calcium and trace metals. J Nutr 124:1060–1064

    Google Scholar 

  24. Lipkin M, Reddy B, Newmark HL, Lamprecht SA (1999) Dietary factors in human colorectal cancer. Annu Rev Nutr 19:545–586

    Article  CAS  PubMed  Google Scholar 

  25. Reddy BS, De Witt S (2000) Goodman lecture. Novel approaches to he prevention of colon cancer by nutritional manipulation and chemoprevention. Cancer Epidemiol Biomarkers Prev 9:239–247

    CAS  PubMed  Google Scholar 

  26. Ilich JZ, Kerstetter JE (2000) Nutrition in bone health revisited: a story beyond calcium [review]. J Am Coll Nutr 19:715–737

    CAS  PubMed  Google Scholar 

  27. New SA, Robins SP, Campbell MK, Martin JC, Garton MJ, Boulton-Smith C, Grubb DA, Lee SJ, Reid DM (2000) Dietary influences on bone mass and bone metabolism: further evidence of a positive link between fruit and vegetable consumption and bone health? Am J Clin Nutr 71:142–151

    CAS  PubMed  Google Scholar 

  28. Newmark HL, Yang K, Lipkin M, Kopelovich L, Liu Y, Fan K, Shinozaki H (2001) A Western-style diet induces benign and malignant neoplasms in the colon of normal C57BL/6 mice. Carcinogenesis 22:1871–1875

    Article  CAS  PubMed  Google Scholar 

  29. Yang K, Kurihara N, Fan K, Newmark H, Rigas B, Bancroft L, Corner G, Livote E, Lesser M, Edelmann W, Velcich A, Lipkin M, Augenlicht L (2008) Dietary induction of colonic tumors in a mouse model of sporadic colon cancer. Cancer Res 68:7803–7810

    Article  CAS  PubMed  Google Scholar 

  30. Newmark H, Yang K, Kurihara N, Fan K, Augenlicht L, Lipkin M (2009) Western-style diet-induced colonic tumors and their modulation by calcium and vitamin D in C57bl/6 mice: a preclinical model for human sporadic colon cancer. Carcinogenesis 30:88–92

    Article  CAS  PubMed  Google Scholar 

  31. Ward WE, Kim S, Bruce WR (2003) A Western-style diet reduces bone mass and biomechanical bone strength to a greater degree in male compared with female rats during development. Br J Nutr 90:589–595

    Article  CAS  PubMed  Google Scholar 

  32. Demigne C, Bloch-Faure M, Picard N, Sabboh H, Besson C, Remesy C, Geoffroy V, Gaston A-T, Nicoletti A, Hagege A, Menard J, Meneton P (2006) Mice chronically fed a Westernized experimental diet as a model of obesity, metabolic syndrome and osteoporosis. Eur J Nutr 45:298–306

    Article  CAS  PubMed  Google Scholar 

  33. Adey WH, McKibbin DL (1970) Studies on the maerl species Phymatolithon calcareum (Pallas) nov. comb. and Lithothamnium corallioides Crouan in the Ria de Vigo. Bot Marina 13:100–106

    Article  Google Scholar 

  34. Blunden G (1991) Agricultural uses of seaweeds and seaweed extracts. In: Guiry MD, Blunden G (eds) Seaweed resources in Europe: uses and potential. John Wiley & Sons, Chichester, pp 65–81

    Google Scholar 

  35. Blunden G, Binns WW, Perks F (1975) Commercial collection and utilisation of maerl. Econ Bot 29:140–145

    CAS  Google Scholar 

  36. Frestedt JL, Walsh M, Kuskowski MA, Zenk JL (2008) A natural mineral supplement provides relief from knee osteoarthritis symptoms: a randomized controlled pilot trial. Nutr J 7:9

    Article  PubMed  Google Scholar 

  37. Frestedt JL, Kuskowski MA, Zenk JL (2009) A natural seaweed derived mineral supplement (aquamin F) for knee arthritis: a randomized, placebo controlled pilot study. Nutr J 8:7

    Article  PubMed  Google Scholar 

  38. Taylor DK, Meganck JA, Terkhorn S, Rajani R, Naik A, O’Keefe RJ, Goldstein SA, Hankenson KD (2009) Thrombospondin-2 influences the proportion of cartilage and bone during fracture healing. J Bone Miner Res 24:1043–1054

    Article  PubMed  Google Scholar 

  39. Meganck JA, Kozloff KM, Thornton MM, Broski SM, Goldstein SA (2009) Beam hardening artifacts in micro-computed tomography scanning can be reduced by X-ray beam filtration and the resulting images can be used to accurately measure BMD. Bone 45:1104–1106

    Article  PubMed  Google Scholar 

  40. Salem GJ (1993) Adaptations of immature trabecular bone to moderate exercise: geometrical, biochemical, and biomechanical correlates. Bone 14:647–654

    Article  CAS  PubMed  Google Scholar 

  41. Hannon RA, Clowes JA, Eagleton AC, Al Hadari AA, Eastell R, Blumsohn A (2004) Clinical performance of immunoreactive tartrate resistant acid phosphatase isoform 5b as a marker of bone resorption. Bone 34:187–194

    Article  CAS  PubMed  Google Scholar 

  42. Alatalo SL, Halleen JM, Hentunen TA, Monkkonen J, Vaananen JH (2000) Rapid screening method for osteoclast differentiation in vitro that measures tartrate-resistant acid phosphatase 5b activity secreted into the culture medium. Clin Chem 46:1751–1754

    CAS  PubMed  Google Scholar 

  43. Hauschka PV, Lian JB, Cole DEC, Gundberg CM (1989) Osteocalcin and matrix Gla protein: vitamin K–dependent proteins in bone. Physiol Rev 69:990–1047

    CAS  PubMed  Google Scholar 

  44. Risteli J, Risteli L (2006) Products of bone collagen metabolism. In: Seibel MJ, Robins SP, Bilezikian JP (eds) Dynamics of bone and cartilage metabolism: principles and clinical applications, 2nd edn. Academic Press, London, pp 391–405

  45. Ritchie RO, Koester KJ, Ionova S, Yao W, Lane NE, Ager JW III (2008) Measurement of the toughness of bone: a tutorial with special reference to small animal studies. Bone 43:798–812

    CAS  PubMed  Google Scholar 

  46. Bilezikian JP (1999) Osteoporosis in men. J Clin Endocrinol Metab 84:3431–3434

    Article  CAS  PubMed  Google Scholar 

  47. vom Saal FS, Finch CE, Nelson JF (1994) Natural history and mechanisms of reproduction aging in humans, laboratory rodents and other selected species. In: Knobil E, Neill JD (eds) Physiology of reproduction, 2nd edn. Raven Press, New York, pp 1215–1314

    Google Scholar 

  48. Cashman KD (2008) Altered bone metabolism in inflammatory disease: role for nutrition. Proc Nutr Soc 67:196–205

    Article  CAS  PubMed  Google Scholar 

  49. Hardy R, Cooper MS (2009) Bone loss in inflammatory disorders. J Endocrinol 201:309–320

    Article  CAS  PubMed  Google Scholar 

  50. Jur T, Mertz M, Aoki K, Horie D, Ohya K, Gautam A, Mouritsen S, Oda H, Nakamura K, Tanaka S (2002) A novel therapeutic vaccine approach, targeting RANKL, prevents bone destruction and bone-related disorders. J Bone Miner Metab 20:266–268

    Article  Google Scholar 

  51. Clayburgh DR, Shen L, Turner JR (2004) A porous defense: the leaky epithelial barrier in intestinal disease. Lab Invest 84:282–291

    Article  CAS  PubMed  Google Scholar 

  52. Aslam MN, Bhagavathula N, Chakrabarty S, Varani J (2009) Growth-inhibitory effects of aquamin, a mineralized extract from the red algae, Lithothamnion calcerum, on Ca2+-sensitive and Ca2+-resistant human colon carcinoma cells. Cancer Lett 283:186–192

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This study was supported in part by Grant CA140760 from the U.S. Public Health Service. We thank Marigot (Cork, Ireland) as the source of the mineral-rich algae extract.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Varani.

Additional information

The authors have stated that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Aslam, M.N., Kreider, J.M., Paruchuri, T. et al. A Mineral-Rich Extract from the Red Marine Algae Lithothamnion calcareum Preserves Bone Structure and Function in Female Mice on a Western-Style Diet. Calcif Tissue Int 86, 313–324 (2010). https://doi.org/10.1007/s00223-010-9340-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-010-9340-9

Keywords

  • Bone mineralization
  • Bone strength
  • Mineral-rich red algae extract
  • Aquamin
  • High-fat Western-style diet
  • Osteoporosis