Skip to main content

Advertisement

Log in

IL-18 Inhibits TNF-α-Induced Osteoclastogenesis Possibly via a T Cell-Independent Mechanism in Synergy with IL-12 In Vivo

  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

It has recently been reported that tumor necrosis factor (TNF)-α has the ability to accelerate osteoclastogenesis. We previously reported that the proinflammatory cytokine interleukin (IL)-18 inhibits TNF-α-mediated osteoclastogenesis in mouse bone marrow cultures. In the present study, the effect of IL-18 on TNF-α-mediated osteoclastogenesis was investigated in vivo. We administered TNF-α with or without IL-18 into the supracalvaria of mice. The number of osteoclasts in the suture of the calvaria was increased in mice administered TNF-α. The number of osteoclasts in mice administered both TNF-α and IL-18 was lower than that in mice administered TNF-α alone. We previously showed that IL-12 and IL-18 synergistically inhibit TNF-α-mediated osteoclastogenesis in vitro. To assess the ability of these two cytokines to synergistically inhibit TNF-α-induced osteoclastogenesis in vivo, mice were administered the two cytokines at doses that did not inhibit osteoclast formation. The combination of IL-12 and IL-18 markedly inhibited TNF-α-induced osteoclastogenesis in vivo. To evaluate how IL-12 and IL-18 synergistically affect TNF-α-induced osteoclastogenesis, the IL-18 receptor (IL-18R) and IL-12R expression levels were analyzed by RT-PCR in bone marrow cells cultured with IL-12 or IL-18. IL-18R mRNA was increased in cells cultured with IL-12, while IL-12R mRNA was increased in cells cultured with IL-18. In addition, IL-18 inhibited TNF-α-induced osteoclastogenesis in mice with T-cell depletion caused by anti-CD4 and anti-CD8 antibodies. The present results suggest that IL-18 may inhibit TNF-α-mediated osteoclastogenesis in vivo via a T cell-independent mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Teitelbaum SL (2000) Bone resorption by osteoclasts. Science 289:1504–1508

    Article  CAS  PubMed  Google Scholar 

  2. Kobayashi K, Takahashi N, Jimi E, Udagawa N, Takami M, Kotake S, Nakagawa N, Kinosaki M, Yamaguchi K, Shima N, Yasuda H, Morinaga T, Higashio K, Martin TJ, Suda T (2000) Tumor necrosis factor alpha stimulates osteoclast differentiation by a mechanism independent of the ODF/RANKL-RANK interaction. J Exp Med 191:275–286

    Article  CAS  PubMed  Google Scholar 

  3. Kim N, Kadono Y, Takami M, Lee J, Lee SH, Okada F, Kim JH, Kobayashi T, Odgren PR, Nakano H, Yeh WC, Lee SK, Lorenzo JA, Choi Y (2005) Osteoclast differentiation independent of the TRANCE-RANK-TRAF6 axis. J Exp Med 202:589–595

    Article  CAS  PubMed  Google Scholar 

  4. Kitaura H, Sands MS, Aya K, Zhou P, Hirayama T, Uthgenannt B, Wei S, Takeshita S, Novack DV, Silva MJ, Abu AY, Ross FP, Teitelbaum SL (2004) Marrow stromal cells and osteoclast precursors differentially contribute to TNF-alpha-induced osteoclastogenesis in vivo. J Immunol 173:4838–4846

    CAS  PubMed  Google Scholar 

  5. Kitaura H, Zhou P, Kim HJ, Novack DV, Ross FP, Teitelbaum SL (2005) M-CSF mediates TNF-induced inflammatory osteolysis. J Clin Invest 115:3418–3427

    Article  CAS  PubMed  Google Scholar 

  6. Tracey KJ, Cerami A (1993) Tumor necrosis factor, other cytokines and disease. Annu Rev Cell Biol 9:317–343

    Article  CAS  PubMed  Google Scholar 

  7. Wong M, Ziring D, Korin Y, Desai S, Kim S, Lin J, Gjertson D, Braun J, Reed E, Singh RR (2008) TNFα blockade in human diseases: mechanisms and future directions. Clin Immunol 126:121–136

    Article  CAS  PubMed  Google Scholar 

  8. Okamura H, Tsutsui H, Kashiwamura S, Yoshimoto T, Nakanishi K (1998) Interleukin-18: a novel cytokine that augments both innate and acquired immunity. Adv Immunol 70:281–312

    Article  CAS  PubMed  Google Scholar 

  9. Udagawa N, Horwood NJ, Elliott J, Mackay A, Owens J, Okamura H, Kurimoto M, Chambers TJ, Martin TJ, Gillespie MT (1997) Interleukin-18 (interferon-γ-inducing factor) is produced by osteoblasts and acts via granulocyte/macrophage colony-stimulating factor and not via interferon-γ to inhibit osteoclast formation. J Exp Med 185:1005–1012

    Article  CAS  PubMed  Google Scholar 

  10. Okamura H, Tsutsi H, Komatsu T, Yutsudo M, Hakura A, Tanimoto T, Torigoe K, Okura T, Nukada Y, Hattori K, Akita K, Namba M, Tanabe F, Konishi K, Fukuda S, Kurimoto M (1995) Cloning of a new cytokine that induces IFN-γ production by T cells. Nature 378:88–91

    Article  CAS  PubMed  Google Scholar 

  11. Nagata N, Kitaura H, Yoshida N, Nakayama K (2003) Inhibition of RANKL-induced osteoclast formation in mouse bone marrow cells by IL-12: involvement of IFN-γ possibly induced from non-T cell population. Bone 33:721–732

    Article  CAS  PubMed  Google Scholar 

  12. Kitaura H, Nagata N, Fujimura Y, Hotokezaka H, Yoshida N, Nakayama K (2002) Effect of IL-12 on TNF-α-mediated osteoclast formation in bone marrow cells: apoptosis mediated by Fas/Fas ligand interaction. J Immunol 169:4732–4738

    PubMed  Google Scholar 

  13. Kitaura H, Tatamiya M, Nagata N, Fujimura Y, Eguchi T, Yoshida N, Nakayama K (2006) IL-18 induces apoptosis of adherent bone marrow cells in TNF-α mediated osteoclast formation in synergy with IL-12. Immunol Lett 107:22–31

    Article  CAS  PubMed  Google Scholar 

  14. Horwood NJ, Udagawa N, Elliott J, Grail D, Okamura H, Kurimoto M, Dunn AR, Martin T, Gillespie MT (1998) Interleukin 18 inhibits osteoclast formation via T cell production of granulocyte macrophage colony-stimulating factor. J Clin Invest 101:595–603

    Article  CAS  PubMed  Google Scholar 

  15. Horwood NJ, Elliott J, Martin TJ, Gillespie MT (2001) IL-12 alone and in synergy with IL-18 inhibits osteoclast formation in vitro. J Immunol 166:4915–4921

    CAS  PubMed  Google Scholar 

  16. Kawase Y, Hoshino T, Yokota K, Kuzuhara A, Nakamura M, Maeda Y, Nishiwaki E, Zenmyo M, Hiraoka K, Aizawa H, Yoshino K (2003) Bone malformations in interleukin-18 transgenic mice. J Bone Miner Res 18:975–983

    Article  CAS  PubMed  Google Scholar 

  17. Raggatt LJ, Qin L, Tamasi J, Jefcoat SJ, Shimizu E, Selvamurugan N, Liew FY, Bevelock L, Feyen JH, Partridge NC (2008) Interleukin-18 is regulated by parathyroid hormone and is required for its bone anabolic actions. J Biol Chem 283:6790–6798

    Article  CAS  PubMed  Google Scholar 

  18. Ahn HJ, Maruo S, Tomura M, Mu J, Hamaoka T, Nakanishi K, Clark S, Kurimoto M, Okamura H, Fujiwara H (1997) A mechanism underlying synergy between IL-12 and IFN-γ-inducing factor in enhanced production of IFN-γ. J Immunol 159:2125–2131

    CAS  PubMed  Google Scholar 

  19. Tomura M, Zhou XY, Maruo S, Ahn HJ, Hamaoka T, Okamura H, Nakanishi K, Tanimoto T, Kurimoto M, Fujiwara H (1998) A critical role for IL-18 in the proliferation and activation of NK1.1+ CD3 cells. J Immunol 160:4738–4746

    CAS  PubMed  Google Scholar 

  20. Munder M, Mallo M, Eichmann K, Modolell M (1998) Murine macrophages secrete interferon γ upon combined stimulation with interleukin (IL)-12 and IL-18: a novel pathway of autocrine macrophage activation. J Exp Med 187:2103–2108

    Article  CAS  PubMed  Google Scholar 

  21. Yamada N, Niwa S, Tsujimura T, Iwasaki T, Sugihara A, Futani H, Hayashi S, Okamura H, Akedo H, Terada N (2002) Interleukin-18 and interleukin-12 synergistically inhibit osteoclastic bone-resorbing activity. Bone 30:901–908

    Article  CAS  PubMed  Google Scholar 

  22. Xu D, Chan WL, Leung BP, Hunter D, Schulz K, Carter RW, McInnes IB, Robinson JH, Liew FY (1998) Selective expression and functions of interleukin 18 receptor on T helper (Th) type 1 but not Th2 cells. J Exp Med 188:1485–1492

    Article  CAS  PubMed  Google Scholar 

  23. Vanhee D, Gosset P, Boitelle A, Wallaert B, Tonnel AB (1995) Cytokines and cytokine network in silicosis and coal workers’ pneumoconiosis. Eur Respir J 8:834–842

    CAS  PubMed  Google Scholar 

  24. Huaux F, Lardot C, Arras M, Delos M, Many MC, Coutelier JP, Buchet JP, Renauld JC, Lison D (1999) Lung fibrosis induced by silica particles in NMRI mice is associated with an upregulation of the p40 subunit of interleukin-12 and Th-2 manifestations. Am J Respir Cell Mol Biol 20:561–572

    CAS  PubMed  Google Scholar 

  25. Urushihara N, Iwagaki H, Yagi T, Kohka H, Kobashi K, Morimoto Y, Yoshino T, Tanimoto T, Kurimoto M, Tanaka N (2000) Elevation of serum interleukin-18 levels and activation of Kupffer cells in biliary atresia. J Pediatr Surg 35:446–449

    Article  CAS  PubMed  Google Scholar 

  26. Makiishi-Shimobayashi C, Tsujimura T, Iwasaki T, Yamada N, Sugihara A, Okamura H, Hayashi S, Terada N (2001) Interleukin-18 up-regulates osteoprotegerin expression in stromal/osteoblastic cells. Biochem Biophys Res Commun 281:361–366

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a Grant for Scientific Research from the Ministry of Education, Science, and Culture (Japan) and the President’s Discretionary Fund of Nagasaki University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideki Kitaura.

Additional information

The authors have stated that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morita, Y., Kitaura, H., Yoshimatsu, M. et al. IL-18 Inhibits TNF-α-Induced Osteoclastogenesis Possibly via a T Cell-Independent Mechanism in Synergy with IL-12 In Vivo. Calcif Tissue Int 86, 242–248 (2010). https://doi.org/10.1007/s00223-010-9335-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-010-9335-6

Keywords

Navigation