Skip to main content

Advertisement

Log in

Disease-Associated Extracellular Matrix Suppresses Osteoblastic Differentiation of Human Periodontal Ligament Cells Via MMP-1

  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Fibronectin (FN) fragments found in chronic inflammatory diseases, including periodontal disease and arthritis, may contribute to tissue destruction in part via induction of matrix metalloproteinases (MMPs). We previously showed that the 120-kDa FN fragment containing the central cell binding domain (120FN) dose dependently induces MMP-1 (collagenase-1) in human periodontal ligament (PDL) cells, whereas intact FN did not elicit this response. Recently, we found that an increase in MMP-1 expression is accompanied by a decreased osteoblastic phenotype in PDL cells. We hypothesized that 120FN inhibits osteoblastic differentiation of PDL cells by inducing MMP-1. Effects of increasing concentrations of 120FN on MMP-1 expression and on osteoblastic markers were assessed in cultured PDL cells using Western blotting, qRT-PCR, and collagen degradation and alkaline phosphatase (AP) activity assays. The 120FN dose dependently increased MMP-1 expression and activity, concomitant with a decrease in AP activity. The increase in collagenase activity was largely attributed to increased MMP-1 expression. Concurrent with the decrease in AP activity, the 120FN reduced baseline and dexamethasone-induced gene expression of specific osteoblastic markers, Runx2 and osteonectin, and diminished mineralized nodule formation. Finally, siRNA inhibition of 120FN-induced MMP-1 reduced collagenase expression and rescued the AP phenotype to baseline levels. These findings suggest that disease-associated 120FN, in addition to having direct effects on tissue destruction by upregulating MMPs, could contribute to disease progression by impeding osteoblastic differentiation of osteogenic PDL cells and, consequently, diminish bone regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Barkalow FJ, Schwarzbauer JE (1991) Localization of the major heparin-binding site in fibronectin. J Biol Chem 266:7812–7818

    CAS  PubMed  Google Scholar 

  2. Hahn LH, Yamada KM (1979) Isolation and biological characterization of active fragments of the adhesive glycoprotein fibronectin. Cell 18:1043–1051

    Article  CAS  PubMed  Google Scholar 

  3. Hynes RO, Yamada KM (1982) Fibronectins: multifunctional modular glycoproteins. J Cell Biol 95:369–377

    Article  CAS  PubMed  Google Scholar 

  4. Pierschbacher MD, Ruoslahti E (1984) Variants of the cell recognition site of fibronectin that retain attachment-promoting activity. Proc Natl Acad Sci USA 81:5985–5988

    Article  CAS  PubMed  Google Scholar 

  5. Clemmensen I, Andersen RB (1982) Different molecular forms of fibronectin in rheumatoid synovial fluid. Arth Rheum 25:25–31

    Article  CAS  Google Scholar 

  6. Griffiths AM, Herbert KE, Perrett D, Scott DL (1989) Fragmented fibronectin and other synovial fluid proteins in chronic arthritis: their relation to immune complexes. Clin Chim Acta 184:133–146

    Article  CAS  PubMed  Google Scholar 

  7. Huynh QN, Wang S, Tafolla E, Gansky SA, Kapila S, Armitage GC, Kapila YL (2002) Specific fibronectin fragments as markers of periodontal disease status. J Periodontol 73:1101–1110

    Article  CAS  PubMed  Google Scholar 

  8. Talonpoika J, Heino J, Larjava H, Hakkinen L, Paunio K (1989) Gingival crevicular fluid fibronectin degradation in periodontal health and disease. Scand J Dent Res 97:415–421

    CAS  PubMed  Google Scholar 

  9. Xie DL, Meyers R, Homandberg GA (1992) Fibronectin fragments in osteoarthritic synovial fluid. J Rheumatol 19:1448–1452

    CAS  PubMed  Google Scholar 

  10. Huhtala P, Humphries MJ, McCarthy JB, Tremble PM, Werb Z, Damsky CH (1995) Cooperative signaling by alpha 5 beta 1 and alpha 4 beta 1 integrins regulates metalloproteinase gene expression in fibroblasts adhering to fibronectin. J Cell Biol 129:867–879

    Article  CAS  PubMed  Google Scholar 

  11. Kapila YL, Kapila S, Johnson PW (1996) Fibronectin and fibronectin fragments modulate the expression of proteinases and proteinase inhibitors in human periodontal ligament cells. Matrix Biol 15:251–261

    Article  CAS  PubMed  Google Scholar 

  12. Werb Z, Tremble PM, Behrendtsen O, Crowley E, Damsky CH (1989) Signal transduction through the fibronectin receptor induces collagenase and stromelysin gene expression. J Cell Biol 109:877–889

    Article  CAS  PubMed  Google Scholar 

  13. Xie DL, Hui F, Meyers R, Homandberg GA (1994) Cartilage chondrolysis by fibronectin fragments is associated with release of several proteinases: stromelysin plays a major role in chondrolysis. Arch Biochem Biophys 311:205–212

    Article  CAS  PubMed  Google Scholar 

  14. Homandberg GA, Meyers R, Xie DL (1992) Fibronectin fragments cause chondrolysis of bovine articular cartilage slices in culture. J Biol Chem 267:3597–3604

    CAS  PubMed  Google Scholar 

  15. Homandberg GA, Hui F (1994) Arg-Gly-Asp-Ser peptide analogs suppress cartilage chondrolytic activities of integrin-binding and nonbinding fibronectin fragments. Arch Biochem Biophys 310:40–48

    Article  CAS  PubMed  Google Scholar 

  16. Hu B, Kapila YL, Buddhikot M, Shiga M, Kapila S (2000) Coordinate induction of collagenase-1, stromelysin-1 and urokinase plasminogen activator (uPA) by the 120-kDa cell-binding fibronectin fragment in fibrocartilaginous cells: uPA contributes to activation of procollagenase-1. Matrix Biol 19:657–669

    Article  CAS  PubMed  Google Scholar 

  17. Lopatin DE, Caffesse ER, Bye FL, Caffesse RG (1989) Concentrations of fibronectin in the sera and crevicular fluid in various stages of periodontal disease. J Clin Periodontol 16:359–364

    Article  CAS  PubMed  Google Scholar 

  18. Talonpoika JT, Soderling E, Paunio K (1993) Characterization of fibronectin and fibrin(ogen) fragments in gingival crevicular fluid. Scand J Dent Res 101:26–32

    CAS  PubMed  Google Scholar 

  19. Chambers TJ, Darby JA, Fuller K (1985) Mammalian collagenase predisposes bone surfaces to osteoclastic resorption. Cell Tissue Res 241:671–675

    Article  CAS  PubMed  Google Scholar 

  20. Franceschi RT, Iyer BS, Cui Y (1994) Effects of ascorbic acid on collagen matrix formation and osteoblast differentiation in murine MC3T3–E1 cells. J Bone Miner Res 9:843–854

    Article  CAS  PubMed  Google Scholar 

  21. Chien HH, Lin WL, Cho MI (1999) Interleukin-1beta-induced release of matrix proteins into culture media causes inhibition of mineralization of nodules formed by periodontal ligament cells in vitro. Calcif Tissue Int 64:402–413

    Article  CAS  PubMed  Google Scholar 

  22. Hayami T, Kapila YL, Kapila S (2008) MMP-1 (collagenase-1) and MMP-13 (collagenase-3) differentially regulate markers of osteoblastic differentiation in osteogenic cells. Matrix Biol 27:682–692

    Article  CAS  PubMed  Google Scholar 

  23. Takiguchi T, Kobayashi M, Suzuki R, Yamaguchi A, Isatsu K, Nishihara T, Nagumo M, Hasegawa K (1998) Recombinant human bone morphogenetic protein-2 stimulates osteoblast differentiation and suppresses matrix metalloproteinase-1 production in human bone cells isolated from mandibulae. J Periodontal Res 33:476–485

    Article  CAS  PubMed  Google Scholar 

  24. Hayami T, Zhang Q, Kapila Y, Kapila S (2007) Dexamethasone’s enhancement of osteoblastic markers in human periodontal ligament cells is associated with inhibition of collagenase expression. Bone 40:93–104

    Article  CAS  PubMed  Google Scholar 

  25. Seo BM, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J, Young M, Robey PG, Wang CY, Shi S (2004) Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 364:149–155

    Article  CAS  PubMed  Google Scholar 

  26. Chen SC, Marino V, Gronthos S, Bartold PM (2006) Location of putative stem cells in human periodontal ligament. J Periodontal Res 41:547–553

    Article  CAS  PubMed  Google Scholar 

  27. Nagatomo K, Komaki M, Sekiya I, Sakaguchi Y, Noguchi K, Oda S, Muneta T, Ishikawa I (2006) Stem cell properties of human periodontal ligament cells. J Periodontal Res 41:303–310

    Article  CAS  PubMed  Google Scholar 

  28. Xu J, Wang W, Kapila Y, Lotz J, Kapila S (2009) Multiple differentiation capacity of STRO-1+/CD146+ PDL mesenchymal progenitor cells. Stem Cells Dev 18:487–496

    Article  CAS  PubMed  Google Scholar 

  29. Ruoslahti E, Hayman EG, Engvall E, Cothran WC, Butler WT (1981) Alignment of biologically active domains in the fibronectin molecule. J Biol Chem 256:7277–7281

    CAS  PubMed  Google Scholar 

  30. Ruoslahti E, Hayman EG, Pierschbacher M, Engvall E (1982) Fibronectin: purification, immunochemical properties, and biological activities. Methods Enzymol 82(Pt A):803–831

    Article  CAS  PubMed  Google Scholar 

  31. Underwood PA, Bean PA, Mitchell SM, Whitelock JM (2001) Specific affinity depletion of cell adhesion molecules and growth factors from serum. J Immunol Methods 247:217–224

    Article  CAS  PubMed  Google Scholar 

  32. Shiga M, Kapila YL, Zhang Q, Hayami T, Kapila S (2003) Ascorbic acid induces collagenase-1 in human periodontal ligament cells but not in MC3T3–E1 osteoblast-like cells: potential association between collagenase expression and changes in alkaline phosphatase phenotype. J Bone Miner Res 18:67–77

    Article  CAS  PubMed  Google Scholar 

  33. Aronow MA, Gerstenfeld LC, Owen TA, Tassinari MS, Stein GS, Lian JB (1990) Factors that promote progressive development of the osteoblast phenotype in cultured fetal rat calvaria cells. J Cell Physiol 143:213–221

    Article  CAS  PubMed  Google Scholar 

  34. Cheng SL, Lai CF, Blystone SD, Avioli LV (2001) Bone mineralization and osteoblast differentiation are negatively modulated by integrin alpha(v)beta3. J Bone Miner Res 16:277–288

    Article  CAS  PubMed  Google Scholar 

  35. Jikko A, Harris SE, Chen D, Mendrick DL, Damsky CH (1999) Collagen integrin receptors regulate early osteoblast differentiation induced by BMP-2. J Bone Miner Res 14:1075–1083

    Article  CAS  PubMed  Google Scholar 

  36. Mizuno M, Fujisawa R, Kuboki Y (2000) Type I collagen-induced osteoblastic differentiation of bone-marrow cells mediated by collagen-alpha2beta1 integrin interaction. J Cell Physiol 184:207–213

    Article  CAS  PubMed  Google Scholar 

  37. Schneider GB, Zaharias R, Stanford C (2001) Osteoblast integrin adhesion and signaling regulate mineralization. J Dent Res 80:1540–1544

    Article  CAS  PubMed  Google Scholar 

  38. Xiao G, Wang D, Benson MD, Karsenty G, Franceschi RT (1998) Role of the alpha2-integrin in osteoblast-specific gene expression and activation of the Osf2 transcription factor. J Biol Chem 273:32988–32994

    Article  CAS  PubMed  Google Scholar 

  39. Xiao G, Gopalakrishnan R, Jiang D, Reith E, Benson MD, Franceschi RT (2002) Bone morphogenetic proteins, extracellular matrix, and mitogen-activated protein kinase signaling pathways are required for osteoblast-specific gene expression and differentiation in MC3T3–E1 cells. J Bone Miner Res 17:101–110

    Article  CAS  PubMed  Google Scholar 

  40. Karsdal MA, Larsen L, Engsig MT, Lou H, Ferreras M, Lochter A, Delaisse JM, Foged NT (2002) Matrix metalloproteinase–dependent activation of latent transforming growth factor-beta controls the conversion of osteoblasts into osteocytes by blocking osteoblast apoptosis. J Biol Chem 277:44061–44067

    Article  CAS  PubMed  Google Scholar 

  41. Lee S, Jilani SM, Nikolova GV, Carpizo D, Iruela-Arispe ML (2005) Processing of VEGF-A by matrix metalloproteinases regulates bioavailability and vascular patterning in tumors. J Cell Biol 169:681–691

    Article  CAS  PubMed  Google Scholar 

  42. Nakamura M, Miyamoto S, Maeda H, Ishii G, Hasebe T, Chiba T, Asaka M, Ochiai A (2005) Matrix metalloproteinase-7 degrades all insulin-like growth factor binding proteins and facilitates insulin-like growth factor bioavailability. Biochem Biophys Res Commun 333:1011–1016

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Institutes of Health Grants NIH-R01-DE16671 to S.K. and NIH-R01-DE013725 to Y.L.K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil Kapila.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joseph, J., Kapila, Y.L., Hayami, T. et al. Disease-Associated Extracellular Matrix Suppresses Osteoblastic Differentiation of Human Periodontal Ligament Cells Via MMP-1. Calcif Tissue Int 86, 154–162 (2010). https://doi.org/10.1007/s00223-009-9321-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-009-9321-z

Keywords

Navigation